Subject index

- **acoustic tomography** 272, 309–310
- **active packer string** 317–318, 319–321
- **aeromagnetic surveying** 14
- **Akjoujt Power Station, Mauritania** 268–271
- **Alaska** 113
- **alluvial soils, plate loading tests** 197–203
- **Altnabreac granite** 260–261
- **Arizona** 197–203
- **Ashby-Measham bypass, Leics.** 138–143
- **Ashby-de-la-Launde, Lincs.** 339
- **Australia** 85–90
- **Avon** 67–75
- **Barrow Hill, London** 55–61
- **Barton Clay, shear box tests** 218–223, 235
- **Berkshire** 131, 287–294, 296
- **Blue Anchor Formation** 300
- **borehole inflow estimations** 335–343
- **borehole logging** 15–18
- **focussed packer testing** 313–321
- **seismic surveys** 299–307, 309–310
- **slim hole packer testing** 323–325
- **Westbay multiple port piezometers** 325–333
- **borehole siting** 273
- **Bothkennar soft clay** 33–37
- **Boyn Hill Terrace Gravels** 39, 40
- **Bracklesham Sand, standard penetration tests**, 122, 125
- **Bradwell, Essex** 323, 330
- **Bray, Berks.** 287–294, 296
- **Bredon on the Hill, Leics.** 138–143
- **Brent Cross, London** 95–96
- **Bunter Sandstone
 - packer testing** 345–350
- **resistivity** 13
- **calcarenites, deformability** 205–215
- **calibration, and pressuremeter tests** 77–83, 93, 114–116, 118
- **caliche soils** 197–203
- **California Bearing Ratio** 137, 276
- **caliper surveys** 17
- **Cam-clay model** 35–37
- **cambering, and stress testing** 68
- **Cambridge** 97–99
- **CAMFE program** 34–35
- **casing collar locator** 17
- **chalk
 - classification based on penetration resistance** 150
 - dynamic probing** 129–135
 - plate loading tests** 8, 106, 117
 - pressuremeter tests** 104–106, 117
 - resistivity soundings** 289–290
 - seismic measurements** 261–264
- **clays
 - pressuremeter tests** 23–31, 33–37, 67–75, 89
 - seismic tomography** 309–310
 - shear box tests** 7, 217–228, 235–237
 - standard penetration test 4
 - see also specific clays
 - Clegg Hammer 138–143
 - Clegg Meter 276–280, 284
- **Coal Measures, pressuremeter tests** 9
- **cohesion of caliche soils** 197–203
- **compaction evaluation** 4, 275–285, 295; see also settlement prediction
- **compactness of sands** 4
- **compressibility of sands** 125–126
- **compressional wave velocities** 11–12, 259–265, 301
- **conductivity logging** 17, 335–343
- **cone penetration tests** see dynamic cone penetration tests; static cone penetration tests
- **cone resistance
 - and soil type** 185
 - and undrained shear strength** 178–179
- **consistency of clays** 4
- **consolidation
 - and pressuremeter testing** 23–31, 33–37, 63
 - and static cone penetration tests** 6
- **Cowden, Holderness** 99–104
- **cracks, tensile, and pressuremeter response** 85–90
- **creep
 - pressuremeter tests on clay** 23–31, 63, 117
 - pressuremeter tests on ice** 111–116
- **crosshole seismic surveys** 299–307, 309–310
- **cut and cover tunnel investigations** 39–53
- **Dalradian rocks, seismic measurements** 12, 264–265
- **deflectometers** 138–143
- **deformation moduli
 - in calcarenite, influence of scale on** 205–215
 - and cone penetration test** 6
 - in London Clay** 7–8
 - and plate loading tests** 7–8, 205–215
 - and pressuremeter tests** 9–10, 23–31, 117
- **density of sands** 4, 6, 229–233; see also dry density measurements
- **Devonian sandstone aquifer** 336, 339
- **dilatometers** 10, 67–75, 77–83
- **Hughes** 77–83, 118
- **Menard-type** 67–75
- **dipmeter surveys** 17, 330
- **dolerite, seismic tomography** 309–310
- **Dorset** 131–132
- **downhole measurements** 15–18
- **downhole seismic surveys** 299–307, 309–310
- **dry density measurements** 275–276, 279–280, 283, 295
dynamic cone penetration tests 137–143, 155, 164–165, 183–190; see also dynamic probing; standard penetration test; Swedish ram sounding
dynamic probing 129–135, 149–150, 177–180
Dynaplaque instrumented roller 138–143
earth pressure coefficient 49, 53
effective stress in fissured clays 217–228, 235–237
elastic moduli
and seismic measurements 259–260, 267–274
and types of test method 7, 187–189
see also deformation moduli; Poisson’s Ratio; Young’s Modulus
electromagnetic measurements 13–14
electromagnetic vibration exciter 278–279
electronic logging 15–16
Erith, Kent 129–130
Essex 55–61, 323, 330
evaporites 299–307
failure, and stress testing 68–70
falling weight deflectometers 138–143
faults, prediction by seismic refraction 241–256
Fawley Power Station, Hants. 218–223, 235
fill
compaction evaluation 275–285
resistivity soundings 287
fissured clays, effective stress 207–228, 235–237
fissures and fractures, and packer testing 314, 317–321, 347–349; see also fracturing
flood bank clay, shear box tests 217–218, 235
flow tests 315–316, 318–321, 324–325; see also borehole inflow estimations; packer tests
fluid-conductivity logging 17
fluid-velocity logging 17
FOKUS planning and simulation code 314, 317–318
Folkestone Sand, standard penetration tests 121–127
fracture index 249–253, 271
fracturing
prediction in granite 241–256
and rock mass assessment 258, 260
see also fissures and fractures
freeze-thaw effects, and stress testing 68
friction angle, internal 4, 197–198, 201, 227, 229, 235
friction ratio 185
Fulbeck, Lincs. 323
gamma ray logging 16
Garston, Watford 104
Gault Clay
plate loading tests 98–99, 108
pressuremeter tests 98–99, 108
Geulhemmer mine, Limberg, Netherlands 205–215
glacial clays 182
plate loading tests 99–104, 118
pressuremeter tests 29, 99–104
grain size, and penetration tests 186
Grangemouth, Scotland 34–37
granite rocks
seismic refraction survey 241–256
sonic logging 260–261
granite soils, penetration tests 166–169
Grantham Sand, standard penetration tests 121–127
granular soils, relative density measurement 229–233
graves see sands and gravels
gravity measurements 14–15
Green Man roundabout, Leytonstone 39–53, 55–61
ground movement surveys 325
groundwater
contamination 289–294, 296, 335
flow and solute transport modelling 291–294
in-flow calculations 335–343
modelling for radioactive waste disposal 313–321
and resistivity measurements 12, 13
Halewood, Merseyside 339–340
Hampshire 125, 218–223, 235
Hatfield, Herts. 181–190
Hertitage, Berks. 131
Hertford Heath, Herts. 154–155
Hertfordshire 104, 130–131, 145–159, 181–190
Hinkley Point ‘C’ Nuclear Power Station, 309
Hoddesdon, Herts. 155
Holderness 99–104
holding test 33–37
Hong Kong 249
hydraulic conductivity
and packer testing 316–321, 345–350
and resistivity measurements 13
see also permeability
hydrogeology investigations 289–294, 296, 325
ice creep, pressuremeter tests 111–116
inclinometer surveys 17, 325
induction logging 16, 17–18
Janikow, Poland 177–180
joints
and rock mass assessment 249–253, 258, 260
in sands, standard penetration testing 123
Jurong Formation 161–171
kaolin, pressuremeter tests 23–31, 63
Kent 129–130
Keuper Marl
plate loading tests 106, 108
pressuremeter tests 77–83, 106, 108
Korea 241–256
landfill investigations 287–297, 296
laterolog 15
Leicestershire 138–143
Leytonstone, London 61, 39–53, 55–61
Lias, Lower
seismic surveys 299–307, 309
stress testing 67–75
Lilstock Formation 300
Limburg, Netherlands 205–215
lime sediments 177–180
limestone aquifer, temperature-conductivity logging 336, 339
limestone bands in Lias
seismic surveys 299–307, 309
stress testing 68, 72
limit pressure
in Keuper Marl 80–82
in London Clay 55–61
Lincolnshire 67–75, 323, 336, 339
Lincolnshire Limestone aquifer 336, 339
‘log-linear’ structuring 318–319
SUBJECT INDEX 353

London Clay
 plate loading tests 7–8, 95–96, 108
 resistivity soundings 289–290
 shear box testing 224–228, 235–237
Lugeon test 10

Maastrichtian calcarenite 205–215
magnetic logging 14, 17
marls, penetration tests 138–143
Mauritania 268–271
Melbourne Mudstone 85–90
Mersey side 339–340
Merton, London 55–61
 microlaterolog 16
microlog 15
mined ground, pillar stability tests 205–215
 mudstones
 penetration tests 138–143, 161–171
 pressuremeter tests 9, 67–75, 77–83, 85–90
 seismic surveys 299–307
Mundford, Norfolk 261–264
Nekum calcarenites 205–215
Netherlands 205–215
 neutron logging 16
Nirex 323
Norfolk 261–264
Norwich Crag, standard penetration tests 121–127
Nottinghamshire 77–83, 299–307
Offset Wenner technique 287–294
overconsolidation ratio
 in London Clay 44–45
 in sands 186
Oxford Clay, seismic tomography 309–310
 packer tests 10, 341, 345–350
 focussed 313–321
 slim hole 323–325
penetration tests see dynamic cone penetration tests; standard penetration tests; static cone penetration tests
periglacial disturbance, and stress testing 68
 permeability
 and packer testing 345–350
 and pressuremeter tests 35–37, 63
 see also hydraulic conductivity
 permeability testing 10–11, 17, 18
 focussed packer tests 313–321
 slim hole packer tests 323–325
Westbay multiple port piezometer system 325–333
Permian sand 278
Perno-Triassic sandstone aquifers 336, 339–341, 345–350
phyllites 264–265
piezocenes 6, 149
piezovane tests 229–233, 237
piezometer, Westbay multiple port 323, 325–333
plasticity index, and shear strength tests 6
plate loading tests 7–8, 117–118
 on alluvial soils 197–203
 calcarenite 205–215
 on clays 95–104, 108–109
 on weak rocks 104–109
Pleistocene sands and gravels 181–190
Poisson’s Ratio
 and Rayleigh wave equation 277
 and seismic measurements 267, 268, 303–306, 307
Poland 177–180
pore pressures
 and pressuremeter tests 33–37
 and relative density of sand 229–233
 and Westbay piezometer tests 328
porosity and wave velocity 306, 307
power station site investigations 218–223, 235, 268–271, 309–310
pressuremeter testing 8–10, 117–118
 on ice 111–116
 on soils 21–63, 183
 on strong clays and weak rocks 65–110
 and tensile cracking 85–90
see also pressuremeters
pressuermeters
 Menard-type 8–10, 23, 29, 67, 92, 108
 push-in type 93, 108
 membrane calibrations 77–83, 93, 114–116, 118
 strain arm characteristics 40–43, 58–59
see also dilatometers
psammite 264–265
radioactive logging 16
radioactive waste repository site assessments 313–321, 323–333
ram sounding see Swedish ram sounding
Rayleigh wave propagation values 275–285
Rayleigh Weir, Essex 55–61
Reading Beds
 dynamic probing 131, 134
 resistivity soundings 289
Redcar, Yorks. 99
reinstatement buckfill quality 275–285, 295
residual soils
 ram sounding and weight sounding 161–171
resistivity measurements 12–13, 18, 287–294, 296
rock mass assessment from seismic measurements 257–266, 267–274
rock mass classification 257–260
rock mass quality 18, 257, 260–266
 and sonic logging 18, 260
rock mass weathering, and seismic refraction 241–256
rollers, instrumental vibrating 138, 143
sand/sandstone boundary 173
sands and gravels
 dynamic penetration tests 161–171, 183–193
 dynamic probing 129–135, 150–157
 laboratory testing 183–184, 193
 piezovane tests 229–233, 237
 plate loading tests 197–203
 pressuremeter tests 10, 232
 resistivity soundings 289–294
 shear box tests 229
 standard penetration tests 4, 121–127, 173, 183–193
 static penetration tests 6, 183
 surface wave velocity measurements 278–284, 295
 vane tests 229–233, 237
see also specific sands and gravels
sandstones
 packer tests 345–350
 penetration tests 138–143
 resistivity 13
 temperature-conductivity logging 336, 339–341
 see also specific sandstones
scale, influence of, on deformability 205–215
schists, seismic survey 264–265, 268–271
screw plate test 8
seismic measurements 11–12
 crosshole and downhole surveys 299–307, 309–310
 refraction survey in granite 241–256
 rock mass assessment 257–266
 rock mass dynamic elastic moduli 267–271
 surface wave velocity in backfill 275–285
 tomography 272, 309–310
self-boring placement principle 10; see also pressuremeters
settlement monitoring 325
settlement predictions 6, 125–126; see also compaction
evaluation
shear modulus
 and pressuremeter calibrations 80–82
 and Rayleigh-type wave velocity 277
 and seismic measurements 267, 307
shear tests 6–7
 direct (shear box) 117, 183, 198, 217–228, 235–237
 dynamic soundings 177–180
 triaxial 7, 219, 227, 235–237
 vane 6, 177–179, 229–233, 237
 see also plate loading tests; shear modulus; undrained shear strength
shear wave velocities 12, 259–260, 269–270, 277, 301, 307
shearing resistance angle, and test methods 189–190
slitstones, seismic surveys 299–307
Singapore Island 161–171
slickensides, and stress testing 68
slope failures, and stress testing 68
slope stability analyses, caliche soils 200–201
slug tests 10, 315, 318–319
Smug Oak Gravel 182–193
soil classification based on penetration resistance 150, 155, 157
Somerset 299–307, 309
sonic logging 16, 18, 260–261
sonic velocity 260
Southampton, Hants. 125
spontaneous potential logging 16, 17–18
standard penetration tests 4–5, 121–125, 183
 compared with continuous dynamic probing 129–135, 149–150
 compared with ram sounding 161–171
 compared with weight sounding 170
 see also dynamic cone penetration tests
Stanstead Abbots, Herts. 130–131, 152–154
storage coefficient tests 10, 11
strain-control tests in kaolin 24–31, 63
stress, horizontal (lateral), pressuremeter tests 33–37, 43–53, 55–61, 67–75, 85–90, 93–111
stress relief mechanisms, and stress testing 68
stress-control tests in kaolin 24–31, 63
stress-strain curves in fissured clays 207–228, 235–237
Stripa Project 320
Superconducting Super Collider Project 197
Sweden 318–319
Tayside, Scotland 339
temperature logging 16
temperature-conductivity logging 335–343
tensile cracks and pressuremeter response 85–90
Tertiary sands, standard penetration tests 121–127
Thames Valley Gravels, resistivity survey 289–294
tills 182; see also glacial clays
Tolpuddle, Dorset 131–132
tomography, seismic 272, 309–310
transmissivity tests 10, 13, 17, 313–321
Trawsfynydd Power Station 309–310
Trias, seismic surveys 299–307
tristial tests see shear tests
tuffs 268–271
tunnel site investigations 39–53, 197
unconfined compressive strength, and standard penetration tests 124
undrained shear strength
 London Clay 7–8, 40–41
 plate loading tests 7–8
 pressuremeter tests 9–10, 23–31, 33–37, 40–41, 68, 70, 80–82, 93–111
 shear vane tests 6, 177–179
 standard penetration tests 4, 149
 static cone penetration tests 5–6, 177–179
 uniaxial compression tests, on ice 111–116
 uniaxial compressive strength, and rock mass assessment 259–265
Vale of St. Albans, Herts. 181–190
valley bulging, and stress testing 68
vane tests see shear tests; piezovane tests
vibrating weight deflectometers 138
Wakefield, Yorks. 138–139
Wandsworth, London 224–227, 235
Ware Till 182, 183, 186, 189
Wattford, Herts. 150–152
weak rocks
 classification by standard penetration test 5
 pressuremeter tests 67–75, 77–83, 85–90, 91–110
 weathered rocks, ram sounding and weight sounding 161–171
 weathering prediction in granite 241–256
 weight sounding tests 169–171
 Westbay multiple port piezometer 323, 325–333
 Westbury Formation 300, 307
 Westmill Lower Gravel 182, 183
 Westmill Till 186
Yorkshire 99, 138–139
Young’s Modulus
 and seismic measurements 267, 271
 and self-boring pressuremeter testing 53
 see also elastic moduli
Contributor index

Anderson, W. F. 23–32, 63
Ansell, P. 77–84
Atkinson, J. H. 229–234, 235
Azizi, F. 111–116
Barker, R. D. 287–294, 296
Barton, M. E. 121–128, 173, 193
Bell, F. G. 3–20
Black, J. H. 313–322
Card, G. B. 129–136
Carder, D. R. 181–192
Clarke, B. G. 33–38
Corke, D. J. 55–62, 118, 323–334
Cripps, J. C. 3–20
Culshaw, M. G. 3–20, 257–266
Curtis, D. C. 77–84, 118
Dawson, A. R. 137–144
de Freitas, M. H. 240–256
De Natale, J. S. 197–204
Domaschuk, L. 111–116
Eyre, S. F. 335–344
Haberfield, C. M. 85–90
Henshaw, S. 193, 235
Herbert, S. M. 129–136
Hopkins, D. 296
Huntley, S. L. 145–160
Jesset, C. A. 229–234, 237
Johnson, I. W. 85–90
Kartanson, B. H. 111–116
Leach, B. A. 77–84
Lee, S. G. 240–256
Lerner, D. N. 287–294
Lewandowska, J. 177–180
Little, J. A. 181–192, 193
Marsh, A. H. 309
Marsland, A. 63, 91–110, 117, 173, 193
Martin, J. H. 67–76
McCann, D. M. 257–266, 309
McDowell, P. W. 267–274, 295
Muller, E. 197–204
Newman, R. L. 39–54
Nienhuis, H. 205–6
Northmore, K. J. 257–266
Nowatzki, E. A. 197–204
O’Brien, A. S. 39–54
Pang, L. S. 23–32
Pinches, G. M. 299–308
Pitts, J. 161–172
Powell, J. J. M. 91–110
Price, D. G. 205–6
Pyrah, I. C. 23–32
Richards, L. R. 117
Roche, D. P. 129–136
Rodriguez-Estrada, H. V. 287–294
Sammons, C. J. 117, 295
Selby, A. R. 275–286
Shields, D. H. 111–116
Squire, P. D. 67–76
Stevenson, M. 67–76
Tellam, J. H. 335–344
Thom, N. H. 137–144
Thompson, R. P. 299–308
Walthall, S. 345–350
Winter, M. G. 117, 275–286, 295
Wroth, C. P. 63, 117
Special Publications of The Geological Society

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>The Cadomian Orogeny</td>
</tr>
<tr>
<td>50</td>
<td>Classic Petroleum Provinces</td>
</tr>
<tr>
<td>49</td>
<td>The Geology and Tectonics of the Oman Region</td>
</tr>
<tr>
<td>48</td>
<td>Geological Applications of Wireline Logs</td>
</tr>
<tr>
<td>47</td>
<td>Origins and Evolution of the Antarctic Biota</td>
</tr>
<tr>
<td>46</td>
<td>Phanerozoic Ironstones</td>
</tr>
<tr>
<td>45</td>
<td>Alpine Tectonics</td>
</tr>
<tr>
<td>44</td>
<td>Inversion Tectonics</td>
</tr>
<tr>
<td>43</td>
<td>Evolution of Metamorphic Belts</td>
</tr>
<tr>
<td>42</td>
<td>Magmatism in the Ocean Basins</td>
</tr>
<tr>
<td>41</td>
<td>Deltas: Sites and Traps for Fossil Fuels</td>
</tr>
<tr>
<td>40</td>
<td>Lacustrine Petroleum Source Rocks</td>
</tr>
<tr>
<td>39</td>
<td>Early Tertiary Volcanism and the Opening of the NE Atlantic</td>
</tr>
<tr>
<td>38</td>
<td>The Caledonian-Appalachian Orogen</td>
</tr>
<tr>
<td>37</td>
<td>Gondwana and Tethys*</td>
</tr>
<tr>
<td>36</td>
<td>Diagenesis of Sedimentary Sequences</td>
</tr>
<tr>
<td>35</td>
<td>Desert Sediments: Ancient and Modern</td>
</tr>
<tr>
<td>34</td>
<td>Fluid Flow in Sedimentary Basins and Aquifers</td>
</tr>
<tr>
<td>33</td>
<td>Geochemistry and Mineralization of Proterozoic Volcanic Suites</td>
</tr>
<tr>
<td>32</td>
<td>Coal and Coal-bearing Strata: Recent Advances</td>
</tr>
<tr>
<td>31</td>
<td>Geology and Geochemistry of Abyssal Plains</td>
</tr>
<tr>
<td>30</td>
<td>Alkaline Igneous Rocks</td>
</tr>
<tr>
<td>29</td>
<td>Deformation of Sediments and Sedimentary Rocks</td>
</tr>
<tr>
<td>28</td>
<td>Continental Extensioal Tectonics</td>
</tr>
<tr>
<td>27</td>
<td>Evolution of the Lewisian and Comparable Precambrian High Grade Terrains</td>
</tr>
<tr>
<td>26</td>
<td>Marine Petroleum Source Rocks</td>
</tr>
<tr>
<td>25</td>
<td>Sedimentation in the African Rifts</td>
</tr>
<tr>
<td>24</td>
<td>The Nature of the Lower Continental Crust</td>
</tr>
<tr>
<td>23</td>
<td>Habitat of Palaeozoic Gas in North West Europe (Scottish Academic Press)</td>
</tr>
<tr>
<td>22</td>
<td>The English Zechstein and Related Topics</td>
</tr>
<tr>
<td>21</td>
<td>North Atlantic Palaeoceanography</td>
</tr>
<tr>
<td>20</td>
<td>Palaeoecology and Biostratigraphy of Graptolites</td>
</tr>
<tr>
<td>19</td>
<td>Collision Tectonics</td>
</tr>
<tr>
<td>18</td>
<td>Sedimentology: Recent Developments and Applied Aspects</td>
</tr>
<tr>
<td>17</td>
<td>Variscan Tectonics of the North Atlantic Region</td>
</tr>
<tr>
<td>16</td>
<td>Petroleum Geochemistry and Exploration of Europe</td>
</tr>
<tr>
<td>15</td>
<td>A Correlation of Jurassic Rocks in the British Isles, Pt 2, Middle and Upper Jurassic</td>
</tr>
<tr>
<td>14</td>
<td>A Correlation of Jurassic Rocks in the British Isles, Pt 1, Lower Jurassic</td>
</tr>
<tr>
<td>13</td>
<td>A Correlation of Triassic Rocks in the British Isles</td>
</tr>
<tr>
<td>12</td>
<td>A Correlation of Tertiary Rocks in the British Isles</td>
</tr>
<tr>
<td>11</td>
<td>A Correlation of Silesian Rocks in the British Isles</td>
</tr>
<tr>
<td>10</td>
<td>A Correlation of Cretaceous Rocks in the British Isles</td>
</tr>
<tr>
<td>9</td>
<td>A Correlation of Devonian Rocks in the British Isles</td>
</tr>
<tr>
<td>8</td>
<td>A Correlation of Dinantian Rocks in the British Isles</td>
</tr>
<tr>
<td>7</td>
<td>A Correlation of Silesian Rocks in the British Isles</td>
</tr>
<tr>
<td>6</td>
<td>A Correlation of Precambrian Rocks in the British Isles</td>
</tr>
<tr>
<td>5</td>
<td>A Correlation of Cambrian Rocks in the British Isles</td>
</tr>
<tr>
<td>4</td>
<td>A Correlation of Silurian Rocks in the British Isles</td>
</tr>
</tbody>
</table>

Special Reports of The Geological Society

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Magnetostatigraphy</td>
</tr>
<tr>
<td>18</td>
<td>Geophysical Logs in British Stratigraphy</td>
</tr>
<tr>
<td>17</td>
<td>Acritarchs in British Stratigraphy</td>
</tr>
<tr>
<td>16</td>
<td>Trilobites in British Stratigraphy</td>
</tr>
<tr>
<td>15</td>
<td>A Correlation of Jurassic Rocks in the British Isles, Pt 2, Middle and Upper Jurassic</td>
</tr>
<tr>
<td>14</td>
<td>A Correlation of Jurassic Rocks in the British Isles, Pt 1, Lower Jurassic</td>
</tr>
<tr>
<td>13</td>
<td>A Correlation of Triassic Rocks in the British Isles</td>
</tr>
<tr>
<td>12</td>
<td>A Correlation of Tertiary Rocks in the British Isles</td>
</tr>
<tr>
<td>11</td>
<td>A Correlation of Silesian Rocks in the British Isles</td>
</tr>
<tr>
<td>10</td>
<td>A Correlation of Cretaceous Rocks in the British Isles</td>
</tr>
<tr>
<td>9</td>
<td>A Correlation of Devonian Rocks in the British Isles</td>
</tr>
<tr>
<td>8</td>
<td>A Correlation of Dinantian Rocks in the British Isles</td>
</tr>
<tr>
<td>7</td>
<td>A Correlation of Silesian Rocks in the British Isles</td>
</tr>
<tr>
<td>6</td>
<td>A Correlation of Precambrian Rocks in the British Isles</td>
</tr>
<tr>
<td>5</td>
<td>A Correlation of Cambrian Rocks in the British Isles</td>
</tr>
<tr>
<td>4</td>
<td>A Correlation of Silurian Rocks in the British Isles</td>
</tr>
</tbody>
</table>

Memoirs of The Geological Society

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Palaeozoic Palaeogeography and Biogeography</td>
</tr>
<tr>
<td>11</td>
<td>The Ophiolite of Northern Oman</td>
</tr>
<tr>
<td>10</td>
<td>The Chronology of the Geological Record</td>
</tr>
<tr>
<td>9</td>
<td>The Nature and Timing of Orogenic Activity in the Cadomian Rocks of the British Isles</td>
</tr>
<tr>
<td>8</td>
<td>A Palaeogeological Map of the Lower Palaeozoic Floor below the cover of Upper Devonian, Carboniferous and Later Formations</td>
</tr>
<tr>
<td>6</td>
<td>Late Pre-Cambrian Glaciation in Scotland</td>
</tr>
<tr>
<td>5</td>
<td>Shallow-water Sedimentation, as illustrated in the Upper Devonian Baggy Beds</td>
</tr>
<tr>
<td>4</td>
<td>The Geology of Portuguese Timor</td>
</tr>
</tbody>
</table>

Geological Society Engineering Geology Special Publications

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Quaternary Engineering Geology -- available July 1990</td>
</tr>
<tr>
<td>5</td>
<td>Engineering Geology of Underground Movements</td>
</tr>
<tr>
<td>4</td>
<td>Planning and Engineering Geology</td>
</tr>
<tr>
<td>3</td>
<td>Groundwater in Engineering Geology</td>
</tr>
<tr>
<td>2</td>
<td>Site Investigation Practice: Assessing BS 5930</td>
</tr>
</tbody>
</table>

* Titles not listed are out of print
* Available from Oxford University Press
The Quarterly Journal of Engineering Geology
An International Journal Encompassing Engineering Geology and Hydrogeology

Scientific Editor: A.B. Hawkins Assistant Scientific Editor: K.M. Baxter

Scope

The Quarterly Journal of Engineering Geology is an established international journal published by the Geological Society from its publishing house.

Papers are invited from both Fellows and non-Fellows from all areas of the world on topics concerning geology as applied to civil engineering, mining practice and water resources.

The journal also includes review articles, technical notes, meeting reports, book reviews, notices of meetings and photographic features. Occasionally, the journal is largely given over to a report, e.g. the Geological Society Engineering Group Working Party Report on Engineering Geophysics (1988, vol 21, no 3).

The journal has a wide international circulation, being essential reading for geologists and engineers in both industry and academia, especially those working in the following fields:

- rock mechanics
- geotechnics
- applied sedimentology
- soil mechanics
- geohydrology
- hydrogeology
- engineering seismology
- engineering geomorphology
- engineering application of geophysics

Editorial Board:
J.H. ATKINSON
R.D. BARKER
J.H. BLACK
J.C. CRIPPS
P.G. FOOKES
R. HERBERT
K.D. PRIVETT
B.O. SKIPP
G. WALTON
G. WEST

A selection of papers

- Probabilistic approach for design optimization of rockfall protective barriers, P. PARONUZZI (Italy)
- Seismic delineation of features associated with mining subsidence at Houghton-le-Spring, Co. Durham, N.R. GOULTY (UK) & J.E. KRAGH (UK)
- Stress-strain behaviour of sulphur concrete made with different aggregates and admixtures, B. CZARNECKI (Canada) & J.E. GILLOTT (Canada)
- The 1985 Bairamian landslide dam and resulting debris flow, Papua New Guinea, J. KING (Papua New Guinea), I. LOVEDAY (USA) & R.L. SCHUSTER (USA)
- Airborne multispectral scanning of subsidence caused by Permian gypsum dissolution at Ripon, North Yorkshire, A.H. COOPER (UK)
- Applications of geomorphology to small hydroelectric schemes, G.P. BIRCH (UK)
- The oxidation of pyrite in cement stabilized colluvial shale, M.D.A. THOMAS CLARK, R.J. KETTLE (UK) & J.A. MORTON (UK)
- The development of layered sediment beds in the laboratory as an illustration of possible field processes, M.J. EDGE (UK) & G.C. MILL (UK)
- Estimation of groundwater resources of the Berkshire Downs supported by mathematical modelling, K.R. RUSHTON (UK), B.J. CONNORTON (UK) & L.M. TOMLINSON (UK)

Submission procedure

Manuscripts should be prepared as outlined on the inside back cover of the journal, and sent to the Staff Editor: D.C. Ogden, Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK (Tel: 0225 445046 Fax: 0225 442836). There are no page charges. Advertisement enquiries should also be sent to this address.

Subscription rates 1990 (Volume 23)

(The journal is published in January, April, July and October.) ISSN 0481 - 2085

- £96.00 (UK) £115.00 (overseas)
- US $198.00 (North America and Japan only)
- Single issue: £28.00 (UK and overseas) US $ 59.40 (North America and Japan only)

For your Free sample copy and all orders and business correspondence relating to subscriptions should be addressed to: Journals Subscriptions Dept., Room Q1, The Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK (Tel: 0225 445046 Fax: 0225 442836)

Orders can be placed directly or through your usual agent.
Journal of the Geological Society
Chief Editor: M. J. Le Bas

The Journal of the Geological Society is among the world's leading references for significant research in geology. It has been continuously published since 1845 and it enjoys a wide circulation throughout the world.

Only material of the highest quality is accepted for publication. As well as major research papers, the Journal publishes Conference Reports, Discussions and rapid publication Short Papers.

Editors:

J.R. ANDREWS
D. BARR
K.H. BRODIE
B. CHADWICK
H. COLLEY
I.J. FAIRCHILD
N.B.W. HARRIS
R.J. PANKHURST
K.T. PICKERING
R.A. SCRUTTON
D.J. SIVETER
N.J. SOPER
P.J. WILLIAMS

Advisory Editors:

J.D. BELL
F.W. CAMBRAY
L.R.M. COCKS
I.W.D. DALZIEL
L.E. FROSTICK
P.L. HANCOCK
R.T. HAWORTH
J.D. HUDSON
A. NOTHOLT
D. ROBINSON
A. TAIRA
P.A. ZIEGLER

Forthcoming Thematic Sets

- Palaeoclimates
- Nature and Analysis of the Stratigraphic Record
- Tectonics and Sedimentation
- The Murchison Silurian Symposium
- Geology and Geophysics of the Irish Shelf and Continental Margin
- Monitoring Active Volcanoes

Forthcoming Papers

- The San Nicolas batholith of coastal Peru: early Palaeozoic continental arc or continental rift magmatism? S.B. MUKASA (USA) & D.J. HENRY (USA)
- A buried granite batholith beneath the East Midland Shelf of the Southern North Sea Basin, J.A. DONATO (UK) & J.B. MEGSON (UK)
- Rapid thermal recovery of thrust related metamorphism in basement windows of the Scandinavian Caledonides, J.E. LINQVIST (SWEDEN)
- Geochemistry and origin of the Archaean Belt Bridge Complex, Limpopo Belt, South Africa, K.C. CONDIE (USA) & M. BORYTA (USA)
- Geomorphology and surface tilting in an active extensional basin, SW Montana, USA, J. ALEXANDER (UK) & M.R. LEEDER (UK)

Submission procedure
Manuscripts should be sent to the Publications Secretary: Angharad Hills,
The Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath, Avon BA1 3JN, UK (Tel: 0225 445046 - Fax: 0225 442836) There are no page charges. Advertisement enquiries should also be sent to this address.

Subscription rates 1990 (Volume 147)
(The journal is published in January, March, May, July, September and November)

- £198.00 (UK)
- £238.00 (overseas)

Single issues:

- £40.70 (UK and overseas)
- US $ 80.00 (North America and Japan only)

All orders and business correspondence relating to subscriptions should be addressed to: Journals Subscriptions
Dept. Room JJ, The Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK (Tel: 0225 445046 - Fax: 0225 442836)
Orders can be placed directly or through your usual agent.
Please send your order to:

Geological Society Publishing House, Unit 7 Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK
Tel: 01225 445046 Fax: 01225 447036

Please enter my standing order to this book series.

Order Slip

Please add 10% of invoice total for overseas (surface) mail

☐ I enclose a cheque made out to “Geological Society” for £/US $ ___________________________.

☐ I wish to pay by Visa / Access / Mastercard / American Express / Diners Club. Please debit my card no_____________ with the sum of £/US $ ___________________________ Expiry date ___________________________.

Signature ___________________________ Date __________

Please give the address at which the card is registered separately, if not registered at the delivery address.

Name ___________________________ Delivery Address ___________________________

Please send your order to

Geological Society Special Publication No. 50
Edited by J. Brooks (Brooks Associates, UK)

The Classic Petroleum Provinces are still the world's major producers of hydrocarbons and will continue to be so well into, and through the 21st century. In recent years there has been a proliferation of publications on "Future Petroleum Provinces" in the hope that new exploitable hydrocarbon reserves will be discovered. However, the petroleum industry's present and likely future existence will continue to be focused in the classic petroleum provinces of the world. Recently much new data, new understandings, new interpretations, applications of modern concepts, re-evaluation of these new mature areas, fields and basins have resulted in the discovery of major new hydrocarbon accumulations. Many of these basins are not only classic petroleum provinces, but also classic geological provinces.

Principal Authors
J. Brooks (Brooks Associates, UK) K.H. James (Shell, UK) R. Ayman (Corpean, Venezuela) N. Chige (Corpean, Venezuela) M. Robins (Corpean, Venezuela) M.F. Dashwood (Clyde Petroleum, UK) W.U. Mahony (Oxford University, UK) R.J. Hubbard (BP, UK) S. Cwirlew (Esso, Canada) J.A. Lopez (Amoco, USA) T.G. Fols (USA) D.H. Craig (USA) R. Sasaki (Louisiana State University, USA) M.J. Hussein (Saudi Arabia) R. Storey (Imperial College, UK) A.S. Alhashan (UAE University, UAE) P.J. Grantham (Shell, Netherlands) C.K. Paul (Sanpra Ltd, UK) R. Zaki (GUPCO, Egypt) H.M. Hill (International Petroleum, UAE) H. Dorat (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/Germany, Italy) D. van der Baan (Petroleum Development, Oman) J.A. Lopez (Amoco, USA) R.J. Hubbard (BP, UK) O.H. Heum (Statoil, Norway) R.M. Pegrum (Statoil, Norway) A.E. Komrovich (NPO Stighe, USSR) I.I. Nester (Ministry of Geology, USSR) R. Stoneley (Imperial College, UK) M. Sella (DESI/Germany, Italy) K.W. Glennie (Shell, UK) D.H. Craig (USA) H. Doust (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/Germany, Italy) D. van der Baan (Petroleum Development, Oman) J.A. Lopez (Amoco, USA) R.J. Hubbard (BP, UK) O.H. Heum (Statoil, Norway) R.M. Pegrum (Statoil, Norway) A.E. Komrovich (NPO Stighe, USSR) I.I. Nester (Ministry of Geology, USSR) P. Dolan (Dolan & Associates, UK) M. Roberto (Corpoven, Venezuela) K.H. James (Shell, UK) H. Doust (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/Germany, Italy) D. van der Baan (Petroleum Development, Oman) J.A. Lopez (Amoco, USA) R.J. Hubbard (BP, UK) O.H. Heum (Statoil, Norway) R.M. Pegrum (Statoil, Norway) A.E. Komrovich (NPO Stighe, USSR) I.I. Nester (Ministry of Geology, USSR) P. Dolan (Dolan & Associates, UK) M. Roberto (Corpoven, Venezuela) K.H. James (Shell, UK) H. Doust (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/Germany, Italy) D. van der Baan (Petroleum Development, Oman) J.A. Lopez (Amoco, USA) R.J. Hubbard (BP, UK) O.H. Heum (Statoil, Norway) R.M. Pegrum (Statoil, Norway) A.E. Komrovich (NPO Stighe, USSR) I.I. Nester (Ministry of Geology, USSR) P. Dolan (Dolan & Associates, UK) M. Roberto (Corpoven, Venezuela) K.H. James (Shell, UK) H. Doust (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/Germany, Italy) D. van der Baan (Petroleum Development, Oman) J.A. Lopez (Amoco, USA) R.J. Hubbard (BP, UK) O.H. Heum (Statoil, Norway) R.M. Pegrum (Statoil, Norway) A.E. Komrovich (NPO Stighe, USSR) I.I. Nester (Ministry of Geology, USSR) P. Dolan (Dolan & Associates, UK) M. Roberto (Corpoven, Venezuela) K.H. James (Shell, UK) H. Doust (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/Germany, Italy) D. van der Baan (Petroleum Development, Oman) J.A. Lopez (Amoco, USA) R.J. Hubbard (BP, UK) O.H. Heum (Statoil, Norway) R.M. Pegrum (Statoil, Norway) A.E. Komrovich (NPO Stighe, USSR) I.I. Nester (Ministry of Geology, USSR) P. Dolan (Dolan & Associates, UK) M. Roberto (Corpoven, Venezuela) K.H. James (Shell, UK) H. Doust (Shell, Netherlands) K.J. Wier (Shell, Netherlands) M. Sella (DESI/
Oil and gas exploration personnel will find Geological Applications of Wireline Logs of great value as it concentrates on the geological interpretation of downhole subsurface measurements. This volume covers a wide range of topics from conventional wireline log interpretation through to the evaluation of the latest nuclear (geochemical) and Formation Micro Scanner measurements. The volume centres on applications in potential hydrocarbon bearing environments. Also information is presented on engineering, hydrogeology, crystalline basement studies and numerical methods of interpretation. The papers are grouped according to their geological topics as: sedimentology, mineralogy and geochemistry, stratigraphic correlation, fault and fracture identification and physical properties.

Outline of Contents

Sedimentary structures of clastic rocks • FMS images in North Sea oil fields • gamma-ray log shapes • SHDT dip interpretation • well log interpretation • stochastic reservoir description • the language of rocks • carbonate reservoir heterogeneities: detection & analysis • lithofacies determination: new techniques • sediment cyclicity from well logs • interwell matching • geophysical logging, central India • geochemical logging applications • geochemical well logs • geochemical results: core and log data • mudrock evaluation: in situ analysis • NGS measurements in sandstones • North Sea Jurassic sandstones • source rock identification • circumferential acoustic logs • fracture detection • Gullfaks field dipmeter results • fault identification using dipmeter data • hydraulic conductivity from pulse tests • stress regimes in sedimentary basins • in situ stress from borehole breakout-electrical properties of basalt • Christensen's equation

Principal Authors

S.M. Luthi (Schlumberger-Doll Research, USA)
S.D. Harker (Occidental Petroleum, Caledonia, UK)
M.H. Rider (Rider-French Consulting, UK)
J.C. Herweijer (Koninklijke Shell, Netherlands)
B.P. Moss (Scientific Software - intercomp, UK)
C.M. Griffiths (Trondheim University, Norway)
R. Nurmi (Schlumberger, United Arab Emirates)
M.H. Dorfman (Texas University, USA)
P.F. Worthington (BP Research, UK)
C.M. Griffiths (Trondheim University, Norway)
M.M. Herron (Schlumberger-Doll Research, USA)
R.N. Anderson (Columbia University, USA)
T.S. Brewer (Nottingham University, UK)
T.J. Primmer (B.P. Research, UK)
A. Hurst (Statoil, Norway)
B. Humphreys (British Geological Survey, UK)
A.E. Fertl (Atlas Wireline Services, USA)
K.A. Lehne (Statoil, Norway)
T.M. Ronningland (Norsk Hydro, Norway)
M.C. Devilliers (Total CFP, France)
D. Goldberg (Columbia University, USA)
J.S. Bell (Geological Survey of Canada, Canada)
C.J. Evans (British Geological Survey, UK)
M.A. Lovell (Nottingham University, UK)
D.C. Entwisle (British Geological Survey, UK)
D.E. King (Schlumberger Well Services, USA)

Presented unique insight into the diverse applications of wireline logs.
International field of contributors from oil industry, service companies, academia and geological survey organisations.
28 papers
273 illustrations including colour plates
Published January 1990
Price £59.00, US$97.00
ISBN 0 903317 45 1
Primary audience: petroleum geologists, reservoir engineers, petrophysicists, sedimentologists, mineralogists, stratigraphers and geochimists.

Please send your order to:
Geological Society Publishing House
Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK
Telephone: 0225 445046 Fax: 0225 442836

Please add 10% of the invoice total for overseas (surface) mail.