Contents

Foreword xix
Acknowledgements xx
Dedication xxi

Chapter 1 Introduction to engineering geology and geomorphology of glaciated and periglaciated terrains 1
1.1 Introduction 1
1.2 A history of engineering difficulties in formerly glaciated and periglaciated terrain 3
 Case History 1.1: A glacially over-deepened valley and a tunnel heading in Switzerland 5
 Case History 1.2: The first identification of solifluction shear surfaces at low slope angles, Sevenoaks Bypass, Kent 7
 Case History 1.3: Landslide in quick clay at Rissa, Norway, 1978 (Gregersen 1981) 10
 Case History 1.4: Residential apartment blocks constructed on loess, Volgodonsk, Rostov Oblast, Russia 11
 Case History 1.5: Reactivation of periglacial shear surfaces resulting in embankment dam failure 12
 Case History 1.6: A51 Grenoble to Sisteron Autoroute through former glacial Lac de Trièves 13
 Case History 1.7: Glaciotectonic raft of Chalk interpreted during an offshore ground investigation, southern North Sea, UK 16
1.3 The Working Party 18
 1.3.1 Background 18
 1.3.2 Membership 18
 1.3.3 Objectives 20
1.4 Scope of the report 20
1.5 Structure of the book and its contents 22
1.6 Using the Working Party book 25
References 27

Chapter 2 The Quaternary 31
2.1 Introduction 31
 2.1.1 Terms and definitions 33
 2.1.2 Origins of, and mechanisms driving, Quaternary climate change 33
 2.1.3 Purpose and focus of this report 34
2.2 Reconstructing Quaternary environmental change 34
 2.2.1 Archives recording Quaternary history 34
 2.2.1.1 Oxygen isotope stages 35
 2.2.1.2 Climate change in both archives and implications: a synthesis 36
 2.2.1.3 Glaciological implications of Heinrich events 36
 2.2.1.4 A scenario of ice-sheet–climate–ocean interaction 37
 2.2.1.5 Terrestrial archives 37
 2.2.2 Dating Quaternary sediments 37
2.3 Resulting subdivision and timing of the Quaternary 40
 2.3.1 Terrestrial stratigraphy 41
 2.3.2 Quaternary cold-climate lithostratigraphy 41
 2.3.3 The Wolstonian ‘problem’ 42
Chapter 3 Geomorphological framework: glacial and periglacial sediments, structures and landforms

3.1 Introduction
3.2 Terrain evaluation
3.3 Terrain classification
3.4 Engineering geological, glacial and periglacial ground models
 3.4.1 Engineering geological ground models
 3.4.2 Geomorphological landsystem models
 3.4.2.1 Glacial landsystems
 3.4.2.2 Periglacial landsystems
3.5 Glaciogenic sediment descriptors
 3.5.1.1 Subglacial traction till
 3.5.1.2 Glaciectectonite
 3.5.1.3 Supraglacial mass-flow diamicton/glaciogenic debris-flow deposit
 3.5.1.4 Melt-out till
 3.5.2.1 Rhythmites (non-genetic)
 3.5.2.2 Varves (seasonal rhythmites)
 3.5.2.3 Cycopels and cyclopsams (tidally influenced rhythmites)
 3.5.2.4 Turbidites
 3.5.2.5 Dropstone mud and plumbites/silt and mud drapes (ice-rafted debris)
 3.5.2.6 Dropstone diamicton and glaciomarine varves (ice-rafted debris)
 3.5.2.7 Undermelt diamicton
 3.5.2.8 Iceberg-contact deposits (ice keel turbate, iceberg dump structures and mounds)
 3.5.2.9 Glaciogenic debris flow (debrizes)/subaqueous slide and slump deposits
 (including cohesive and cohesionless)
 3.5.2.10 Subaqueous debris-fall deposits (including olistostromes)
 3.5.2.11 Palimpsest lags
 3.5.3.1 Hyperconcentrated flow deposits (jökulhlaup-type flood deposits)
 3.5.3.2 Gravel rhythmites (flood facies)
 3.5.3.3 Plane bed deposits
 3.5.3.4 Cross-bedded facies (dunes and antidunes)
 3.5.3.5 Ripple cross-laminations (including climbing ripple drift)
 3.5.3.6 Gravel sheets
3.6 Periglacial sediment descriptors
 3.6.1.1 Granular head deposits
 3.6.1.2 Clay-rich head deposits
 3.6.1.3 Slopewash deposits
 3.6.1.4 Fluvio-colluvial deposits
 3.6.1.5 Talus deposits
 3.6.1.6 Avalanche deposits
 3.6.1.7 Blockslope deposits
 3.6.1.8 Debris-flow deposits
 3.6.2.1 Sorted sand and gravel
 3.6.2.2 Channel scours
CONTENTS

3.6.2.3 Fine-grained sediments and organic beds in channel fills and on floodplains 149
3.6.3.1 Fluvio-aeolian sand 150
3.6.4.1 Loess 151
3.6.4.2 Coversand (sand-sheet deposits) 152
3.6.4.3 Dune sand 154
3.6.4.4 Niveo-aeolian sand deposits 155
3.6.5.1 Blockfield deposits 158
3.6.5.2 Brecciated bedrock 161
3.7 Macrostructural, erosional and sediment architectural element descriptors 164
3.7.1.1 Clastic dykes, intrusions and hydrofracture fills 165
3.7.1.2 Soft sediment deformation and slump and loading structures 167
3.7.1.3 Dewatering structures 168
3.7.1.4 Microfluting 170
3.7.1.5 Boulder pavements 171
3.7.1.6 Canal fills 172
3.7.2.1 Glaciotectonic foliations 173
3.7.2.2 Glaciotectonic lineations 174
3.7.2.3 Glaciotectonic boudinage 175
3.7.2.4 Glaciotectonic shear zones 177
3.7.2.5 Glaciotectonic folds 178
3.7.2.6 Glaciotectonic faults and thrusts 180
3.7.2.7 Glaciotectonic grabens and half-grabens 183
3.7.3.1 P-forms 184
3.7.3.2 Lunate fractures 185
3.7.3.3 Crescentic gouges 186
3.7.3.4 Crescentic fractures 187
3.7.3.5 Chattermarks 188
3.7.3.6 Rat tails 189
3.7.3.7 Grooves, striations and polished surfaces 190
3.7.4.1 Channel elements 191
3.7.4.2 Downstream accretion elements 192
3.7.4.3 Lateral accretion elements 193
3.7.4.4 Gravel bar and bedform elements 194
3.7.4.5 Sediment gravity-flow elements 195
3.7.4.6 Sandy bedform elements 196
3.7.4.7 Laminated sand-sheet elements 197
3.7.4.8 Overbank fines elements 198
3.7.5.1 Periglacial involutions 199
3.7.5.2 Periglacial creep folds 200
3.7.5.3 Platy structures 201
3.7.5.4 Relict periglacial shears 202
3.7.5.5 Thermal contraction cracks 203
3.7.5.6 Ice-wedge pseudomorphs 204
3.7.5.7 Relict sand wedges 206
3.7.5.8 Composite-wedge pseudomorphs 207
3.7.5.9 Vertical to steeply dipping elongate clasts 208
3.7.5.10 Downslope-deflected strata 209
3.7.5.11 Gulls 210
3.7.5.12 Dip and fault structures 211
3.7.5.13 Superficial valley disturbances and valley bulges 212
3.7.5.14 Buried hollows 213

3.7.6 Superimposed or overprinted sedimentary and structural signatures 214
3.7.6.1 Interbedded diamictons and thin stratified lenses 214
3.7.6.2 Glaciotectonite 215
3.7.6.3 Ice-wedge pseudomorph developed in glaciolacustrine sediments 216
3.7.6.4 Ground ice developed in refrozen mass-flow deposits 217
3.7.6.5 Periglacial involutions within refrozen mass-flow deposits 218
3.7.6.6 Banded massive ground ice beneath glacial diamicton 219

3.8 Microstructures in glacial and periglacial sediments 220
3.8.1 Periglacial microstructures in engineering soils 220
3.8.1.1 Relict periglacial shear microstructure 221
3.8.1.2 Platy or lenticular microstructure 222
3.8.1.3 Banded microstructure or ‘banded fabric’ 223
3.8.1.4 Granular microstructure 224
3.8.1.5 Silt cappings microstructure 225
3.8.1.6 Vesicular microstructure 226

3.8.2 Periglacial microstructures superimposed on glaciogenic sediments 227
3.8.2.1 Platy or lenticular microstructure 228
3.8.2.2 Granular microstructure 229
3.8.2.3 Silt cappings microstructure 230
3.8.2.4 Calcitans microstructure 231
3.8.2.5 Clay cutans or ferri-argillans microstructure 232
3.8.2.6 Oriented clay domains microstructure 233
3.8.2.7 Banded microstructure 234

3.8.3 Glaciogenic sediment microstructures 235
3.8.3.1 Base of subglacial traction till 235
3.8.3.2 Base of subglacial mass-flow diamicton 236
3.8.3.3 Bedrock-rich subglacial traction till 237
3.8.3.4 Faulted lake sediments 238
3.8.3.5 Hydrofracture 239
3.8.3.6 Massive till 240
3.8.3.7 Soft-sediment deformation 242
3.8.3.8 Pseudo-stratified diamicton 243
3.8.3.9 Glaciotectonite in lake sediments 245
3.8.3.10 Till over laminated lake sediments 246
3.8.3.11 Melt-out till 247

3.9 Terrain unit descriptors 248

3.10 Glacial landsystems 248
3.10.1.1 Areal scouring 249
3.10.1.2 Glaciated valleys and glacial troughs 250
3.10.1.3 Hanging valleys 251
3.10.1.4 Arêtes 252
3.10.1.5 Glacial watershed breaches 253
3.10.1.6 Whalebacks 254
3.10.1.7 Trough heads 255
3.10.1.8 Rock basins 256
3.10.1.9 Rock steps 257
3.10.1.10 Cirques (corrie or cwm) 258
3.10.1.11 Cols 259
3.10.1.12 Horns 260
3.10.1.13 Nunataks 261
3.10.1.14 Roche moutonnées 262
3.10.1.15 Röthlisberger channels 263
3.10.1.16 Crag and tail ridges 264
3.10.1.17 Riegel 265
3.10.1.18 Push and squeeze moraines 266
3.10.1.19 Dump moraines and ice-marginal aprons 267
3.10.1.20 Latero-frontal fans and ramps 268
3.10.1.21 Medial moraines 269
3.10.1.22 Hummocky moraine and controlled moraines 270
3.10.1.23 Ribbed terrain 271
3.10.1.24 Glacial erratics 272
3.10.1.25 Crevasse-fill ridges (including crevasse-squeeze ridges) 273
3.10.1.26 Megascale glacial lineations, megaflutes and megagrooves 274
3.10.1.27 Flutes 275
3.10.1.28 Drumlins 276
3.10.1.29 Glacial trimlines 277
3.10.2.1 Composite ridges and thrust block moraines 278
3.10.2.2 Hill–hole pairs 279
3.10.2.3 Cupola hills 280
3.10.2.4 Megablocks and rafts 281
3.10.3.1 Tunnel valleys, tunnel channels, rinnentäler 282
3.10.3.2 Lateral meltwater channels 283
3.10.3.3 Ice-marginal channels 284
3.10.3.4 Subglacial gorges 285
3.10.3.5 Nye channels 286
3.10.3.6 Eskers 287
3.10.3.7 Kame mounds 288
3.10.3.8 Kame terraces 289
3.10.3.9 Valley trains 290
3.10.3.10 Sandar/outwash fans and plains 291
3.10.3.11 Pitted sandar (kettle outwash plain) 292
3.10.3.12 Kettle holes/ponds 293
3.10.3.13 Iceberg melt-out pits and scours 294
3.10.4.1 Morainal banks and coalescent subaqueous fans 295
3.10.4.2 De Geer (washboard) moraines 296
3.10.4.3 Ice-shelf moraines 297
3.10.4.4 Shorelines or strandlines 298
3.10.4.5 Fjords 299
3.10.4.6 Submarine troughs (cross-shelf troughs) 300
3.10.4.7 Grounding line or subaqueous outwash fans 301
3.10.4.8 Grounding-zone wedges 302
3.10.4.9 Trough-mouth fans 303
3.10.4.10 Ice-contact deltas 304
3.10.4.11 Gilbert-type deltas 305
3.10.4.12 Hjulström-type deltas 306

3.11 Periglacial landsystems 307
3.11.1.1 Blockfields/felsenmeer 308
3.11.1.2 Frost-patterned ground 309
3.11.1.3 Periglacial trimlines 310
3.11.1.4 Tors 311
3.11.1.5 Deflation scars 312
3.11.1.6 Deflation surfaces 313
3.11.1.7 Wind stripes 314
3.11.1.8 Wind crescents 315
3.11.2.1 Solifluction sheets and aprons 316
3.11.2.2 Solifluction lobes 317
3.11.2.3 Solifluction benches and terraces 318
3.11.2.4 Ploughing boulders 319
3.11.3.1 Talus accumulations and slopes 320
3.11.3.2 Rock glaciers 321
3.11.3.3 Protalus ramparts and pronival ramparts 322
3.11.3.4 Cryoplanation terraces 323
3.11.3.5 Nivation hollows 324
3.11.3.6 Cliffs 325
3.11.4.1 Periglacial debris flows 326
3.11.4.2 Periglacial debris cones 327
3.11.4.3 Boulder sheets and lobes 328
3.11.4.4 Alluvial fans 329
3.11.5.1 Periglacial river terraces 330
3.11.5.2 Dry valleys 331
3.11.5.3 Relict frost mounds/relict ramparted ground-ice depressions: pingos 332
3.11.5.4 Relict frost mounds/relict ramparted ground-ice depressions: palsas and lithalsas 333
3.11.5.5 Large relict thermokarst depressions 334
3.11.5.6 Cambered strata 335
3.11.6.1 Buried valleys 336

3.12 Slope failures in glaciated and periglaciated terrains 337
3.12.1 Active-layer slides (shallow translational slides) 338
3.12.2 Retrogressive thaw slumps 339
3.12.3 Deep-seated rotational slides 340
3.12.4 Translational rockslides 341
3.12.5 Rockfalls and rock avalanches 342
3.12.6 Mountain slope deformation (deep-seated gravitational failures) 343
3.12.7 Sensitive clay spreads and flowslides 344

Photo credits 345
References 345
Quaternary Research Association (London) Field Guides 366
Chapter 4 Conceptual glacial ground models: British and Irish case studies

4.1 Introduction and rationale

- **4.1.1** The glacial debris cascade and till sedimentology
- **4.1.2** The glacial landsystems approach
- **4.1.3** British and Irish palaeoglaciology

4.2 Ice-sheet-related landsystems

- **4.2.1** Sediment–landform associations
 - **4.2.1.1** Subglacial footprint
 - **4.2.1.2** Ice-marginal complexes
 - **4.2.1.3** Supraglacial debris complexes
- **4.2.2** Typical British and Irish ground models
 - **4.2.2.1** Ice-sheet beds
 - **4.2.2.2** Ice-sheet marginal settings
 - **4.2.2.3** Supraglacial assemblages

4.3 Upland glacial landsystems (hard bedrock terrain)

- **4.3.1** Sediment–landform associations
 - **4.3.1.1** Subglacial footprint
 - **4.3.1.2** Ice-marginal complexes
 - **4.3.1.3** Supraglacial debris complexes
- **4.3.2** Typical British and Irish ground models
 - **4.3.2.1** Ice-sheet recessional settings/topographically constrained ice flow
 - **4.3.2.2** Mountain icefields
 - **4.3.2.3** Smaller mountain glaciers

4.4 Glaciofluvial sediment–landform associations

- **4.4.1** Sediment–landform associations
 - **4.4.1.1** Ice-contact settings
 - **4.4.1.2** Proglacial settings
- **4.4.2** Typical British and Irish ground models
 - **4.4.2.1** The Brampton kame belt and Pennine Escarpment meltwater channels
 - **4.4.2.2** Lleyn Peninsula
 - **4.4.2.3** Strathallan
 - **4.4.2.4** Carstairs
- **4.5** Subaqueous glacial depositional sequences
 - **4.5.1** Sediment–landform associations
 - **4.5.1.1** Ice-proximal depocentres
 - **4.5.1.2** Distal subaqueous sediment assemblages
- **4.5.2** Typical British and Irish ground models
 - **4.5.2.1** Rhosesmor and Wrexham deltas
 - **4.5.2.2** Achnasheen
 - **4.5.2.3** NW Britain continental shelf
 - **4.5.2.4** Waterville, Ireland

4.6 Conclusions: reconciling landsystems and domains

References

Chapter 5 Periglacial and permafrost ground models for Great Britain

5.1 Introduction and rationale

- **5.1.1** Conceptual framework
- **5.1.2** Periglacial, permafrost and paraglacial environments

References
Contents

5.1.2.1 Periglacial environments 502
5.1.2.2 Permafrost 502
5.1.2.3 Paraglacial landscape modification 504

5.1.3 Ground ice 505
5.1.3.1 Occurrence 505
5.1.3.2 Pore ice 506
5.1.3.3 Segregated ice 506
5.1.3.4 Intrusive ice 507
5.1.3.5 Wedge ice 508

5.1.4 Periglacial disturbance, periglacial debris system and frost susceptibility 508
5.1.4.1 Periglacial disturbance 508
5.1.4.2 Periglacial debris system 508
5.1.4.3 Frost susceptibility 509

5.1.5 Periglacial landsystems, terrains and regions 509
5.1.5.1 Periglacial landsystems 509
5.1.5.2 Periglacial regions 510

5.2 Lowland periglacial terrains 513
5.2.1 Lowland periglacial landsystems 513
5.2.1.1 Chronology 513
5.2.1.2 Environmental conditions and permafrost extent 515
5.2.1.3 Permafrost thickness 516

5.2.2 Lowland plateau landsystems 516
5.2.2.1 Weathering profiles (brecciated bedrock) 516
5.2.2.2 Cold-climate aeolian deposits and erosional features 521
5.2.2.3 Involutions 523
5.2.2.4 Large-scale frost-patterned ground 523
5.2.2.5 Periglacial-karst features 525

5.2.3 Sediment-mantled hillslope landsystems 528
5.2.3.1 Deformed weathered bedrock 528
5.2.3.2 Relict periglacial slope (head) deposits 530
5.2.3.3 Cambered strata and widened vertical joints (gulls) 533

5.2.4 Rock-slope landsystems 537
5.2.5 Slope-foot landsystems 537
5.2.5.1 Sediment lobes 538
5.2.5.2 Alluvial fans 538
5.2.5.3 Aprons, sheets or remnant patches of head deposits 538
5.2.5.4 Deep-seated landslides 538

5.2.6 Valley landsystems 541
5.2.6.1 Superficial valley disturbances (bedrock) 541
5.2.6.2 Dry valleys, slopewash and fluvio-colluvial deposits 542
5.2.6.3 Periglacial fluvial deposits and river terraces 544
5.2.6.4 Thermal contraction crack structures 547
5.2.6.5 Relict frost mounds 549
5.2.6.6 Large relict thermokarst depressions 552

5.2.7 Buried landsystems 552
5.2.8 Submerged landsystems 553
5.2.8.1 Southern North Sea Basin 553
5.2.8.2 English Channel (La Manche) 553
5.2.9 Typical lowland ground models
 5.2.9.1 Limestone plateau-clay vale ground model 555
 5.2.9.2 Caprock plateau-mudstone valley ground model 558

5.3 Upland periglacial terrains 558
 5.3.1 Upland periglacial landsystems: chronology and environment 558
 5.3.2 Upland plateau landsystems 558
 5.3.2.1 Blockfields, trimlines and tors 558
 5.3.2.2 Frost-patterned ground 563
 5.3.2.3 Aeolian landforms and deposits on high plateaux 564
 5.3.3 Sediment-mantled hillslope landsystems 564
 5.3.4 Rock-slope landsystems 566
 5.3.4.1 Rock-slope failures 566
 5.3.4.2 Talus accumulations 568
 5.3.4.3 Rock glaciers and protalus ramparts 569
 5.3.5 Slope-foot landsystems 569
 5.3.5.1 Periglacial valley-fill deposits 569
 5.3.5.2 Snow avalanche deposits 571
 5.3.5.3 Debris flows and debris cones 571
 5.3.5.4 Alluvial fans 573
 5.3.6 Terrain models and typical upland ground models 573

5.4 Conclusions 577
References 583

Chapter 6 Material properties and geohazards 599
6.1 Introduction 599
6.2 Ice-related terrains: subglacial, supraglacial and glaciated valley 600
 6.2.1 Tills 600
 6.2.1.1 Introduction 600
 6.2.1.2 Glacial till stratigraphy 603
 6.2.1.3 Geotechnical properties 621
 6.2.1.4 Geotechnical properties 627
 6.2.1.5 Weathering of glacial tills 633
 6.2.2 Eskers, kames and kame terraces 641
6.3 Water-related domains (fluvial, lacustrine and marine): glaciofluvial, glaciolacustrine and glaciomarine 641
 6.3.1 Sands and gravels 641
 6.3.2 Glaciolacustrine deposits 641
 6.3.2.1 The glacial lake environment 641
 6.3.2.2 Glaciolacustrine deposits and depositional processes 643
 6.3.2.3 Geotechnical properties 644
 6.3.2.4 Geohazard behaviour 647
 6.3.2.5 UK lithostratigraphy 658
 6.3.3 Quick clay 658
 6.3.4 Ice-rafted debris (including dropstones) and iceberg-contact deposits 662
6.4 Ice-front-related terrains: glaciotectonic and ice marginal 663
 6.4.1 Deformed/shattered bedrock 663
 6.4.2 Subglacial deformation of soils 663
6.5 Upland periglacial terrains 664
6.1 Boulder fields and tongues 664
6.2 Scree and talus 664
6.3 Lowland periglacial terrains 664
 6.3.1 Solifluction deposits and colluvium 664
 6.3.2 Periglaciated rock surfaces 669
 6.3.3 Ice-wedge pseudomorphs and involutions 670
6.4 Loessic deposits/brickearth 670
 6.4.1 Distribution and identification 670
 6.4.2 Composition 673
 6.4.3 Geotechnical properties 673
 6.4.4 Geohazards associated with loessic deposits 674
 6.4.5 Engineering treatment 678
6.5 Local geohazards 678
 6.5.1 Superficial valley disturbances: cambering, gulls and valley bulging 678
 6.5.1.1 Engineering aspects 680
 6.5.2 Solifluction shears 682
 6.5.3 Kettle holes 683
 6.5.4 Relict cryogenic mounds 683
 6.5.4.1 Characteristics of the relict forms 683
 6.5.4.2 Occurrence in the UK 684
 6.5.4.3 Processes of formation 684
 6.5.4.4 Engineering geological characteristics 685
 6.5.4.5 Mitigation measures 685
 6.5.5 Relict scour hollows 685
 6.5.5.1 Occurrence 687
 6.5.5.2 Formational processes 687
 6.5.5.3 Engineering geological characteristics 687
 6.5.5.4 Mitigation measures 687
6.6 Regional geohazards 689
 6.6.1 Neotectonics: differential crustal movements across SE England during the Holocene following deglaciation 689
 6.6.1.1 The eustatic record 691
 6.6.1.2 The isostatic record 691
 6.6.1.3 Case studies of two areas 691
 6.6.1.4 Summary of eustatic changes in SE England 697
 6.6.2 Quaternary palaeoseismicity 698
6.7 Summary and conclusions 701
Appendix 6.1 Summary description of British till formations and members
 A6.1.1 Caledonia Glacigenic Group (CALI) 703
 A6.1.2 Albion Glacigenic Group (ALBI) 710
Appendix 6.2 Additional Geotechnical Plots 713
Appendix 6.3 Particle Size Distribution and SPT ‘N’ Value Depth Plots by 100 km Grid Square 721
References 732

Chapter 7 Engineering investigation and assessment 741
7.1 Introduction 742
7.2 Preliminaries 742
 7.2.1 Desk studies and field reconnaissance 743
CONTENTS

8.2.4.2 Excavatability 847
8.2.4.3 Pipeline foundations 848
8.2.4.4 Drainage, seepage and inundation 848
8.2.4.5 Reuse of materials 848
8.2.4.6 Corrosion (pipelines/cables) due to ground geochemistry 848
8.2.5 Aggregates and other materials 848
8.2.6 Conclusions 849

8.3 Tunnels and underground structures 849
8.3.1 Tunnelling considerations 849
8.3.2 Groundwater lowering 851
8.3.3 Common problems 852
8.3.4 Tunnelling techniques 853
8.3.5 Conclusions 854

8.4 Dams and reservoirs 855
8.4.1 Dam foundation problems 855
8.4.1.1 Carsington Dam, Derbyshire, UK 856
8.4.1.2 Zelazny Most Tailings Dam, Poland 858
8.4.1.3 Empingham Dam, Rutland, UK 861
8.4.2 Embankment dams constructed on clay-rich tills 862
8.4.2.1 Compaction of glacial clay fill 862
8.4.2.2 Sliding failure due to high fill pore pressures 862
8.4.2.3 Potential for overtopping wave due to landslides 863
8.4.3 Conclusions 863

8.5 Foundations 863
8.5.1 Shallow foundations 863
8.5.2 Pile foundations 866
8.5.3 Retaining walls 870
8.5.4 Specific problems 871
8.5.4.1 Drift-filled hollows in London Clay 871
8.5.4.2 Infilled periglacial valley 871
8.5.4.3 Ice wedge and involutions 872
8.5.4.4 Gulls in limestone 872
8.5.4.5 Valley bulges 872
8.5.4.6 Solution features 874
8.5.4.7 Slope wash 874
8.5.5 Summary 875

8.6 Offshore engineering and installation 875
8.6.1 Introduction 875
8.6.2 Central North Sea and German Bight: oil and gas, wind and tidal energy 875
8.6.3 Norwegian Barents and Russian Kara seas: oil and gas 877
8.6.4 Canadian Scotian Shelf: oil and gas and wind energy 878
8.6.5 Gulf of Maine: wind and wave energy 878
8.6.6 Driven–drilled and grouted piles 879
8.6.6.1 Design issues 879
8.6.6.2 Construction and installation issues 880
8.6.7 Gravity-base structures 881
8.6.7.1 Design issues 881
CONTENTS

8.6.7.2 Construction and installation issues 882
8.6.8 Subsea templates and suction caissons 883
 8.6.8.1 Design issues 883
 8.6.8.2 Construction and installation issues 884
8.6.9 Pipelines and cables 884
8.6.10 Conclusions 884
8.7 Summary and key conclusions 884
References 885

Chapter 9 Conclusions and illustrative case studies 891
9.1 Introduction 891
9.2 Case studies 892
 9.2.1 Glacial examples 892
 Case Study 9.1: Stress-relief fractures in deglaciated valleys in Norway 894
 Case Study 9.2: Sub-glacial channels and tunnel valleys, Doncaster, South Yorkshire 896
 Case Study 9.3: Glacial overflow and marginal channels on the M6, Walton’s Wood, Staffordshire 898
 Case Study 9.4: Glacial lake deposits and infilled river channels at the Hylton Riverside Development, Sunderland, Tyne and Wear 899
 Case Study 9.5: Hydrofracture systems in glacial environments 900
 Case Study 9.6: The problems of identifying rockhead in Bolton, Lancashire 902
 Case Study 9.7: Glacial tills and glaciotectonic rafting in the Dublin Port Tunnel, Ireland 904
 Case Study 9.8: Pile installation in hard glacial tills: Clair Field west of Shetland, UK 905
 Case Study 9.9: Piling in glacifluvial outwash deposits, Hound Point, Firth of Forth, Scotland 908
 Case Study 9.10: Glacial geo-engineering features along the A5 Llandygai to Chirk, north Wales 910
 9.2.2 Periglacial examples 912
 Case Study 9.11: Enigmatic cold-climate diamicton, Marsworth, Buckinghamshire 913
 Case Study 9.12: Landslide at Mam Tor in Derbyshire 914
 Case Study 9.13: UK Channel Tunnel portal at Castle Hill 916
 Case Study 9.14: Superficial valley disturbances A4–A46 Batheaston–Swainswick Bypass, Bath and NE Somerset 918
 Case Study 9.15: Periglacial discontinuities M25, Denham Corner, Buckinghamshire 920
 Case Study 9.16: Periglacial discontinuities at the Flint Hall Farm Landslide, M25, Surrey 922
 Case Study 9.17: Anomalous depressions and the London Water Ring Main 924
 Case Study 9.18: Creation of the Strait of Dover and the English Channel 927
 Case Study 9.19: Periglacial injection structures at Stansstead Abbots, Hertfordshire, UK 928
9.3 Conclusions 931
References 933
Index 937