Contents

Foreword xix
Acknowledgements xx
Dedication xxii

Chapter 1 Introduction to engineering geology and geomorphology of glaciated and periglaciated terrains

1.1 Introduction 1

1.2 A history of engineering difficulties in formerly glaciated and periglaciated terrain 3

 Case History 1.1: A glacially over-deepened valley and a tunnel heading in Switzerland 5

 Case History 1.2: The first identification of solifluction shear surfaces at low slope angles, Sevenoaks Bypass, Kent 7

 Case History 1.3: Landslide in quick clay at Rissa, Norway, 1978 (Gregersen 1981) 10

 Case History 1.4: Residential apartment blocks constructed on loess, Volgodonsk, Rostov Oblast, Russia 11

 Case History 1.5: Reactivation of periglacial shear surfaces resulting in embankment dam failure 12

 Case History 1.6: A51 Grenoble to Sisteron Autoroute through former glacial Lac de Trièves 13

 Case History 1.7: Glaciotectonic raft of Chalk interpreted during an offshore ground investigation, southern North Sea, UK 16

1.3 The Working Party 18

 1.3.1 Background 18

 1.3.2 Membership 18

 1.3.3 Objectives 20

1.4 Scope of the report 20

1.5 Structure of the book and its contents 22

1.6 Using the Working Party book 25

References 27

Chapter 2 The Quaternary

2.1 Introduction 31

 2.1.1 Terms and definitions 33

 2.1.2 Origins of, and mechanisms driving, Quaternary climate change 33

 2.1.3 Purpose and focus of this report 34

2.2 Reconstructing Quaternary environmental change 34

 2.2.1 Archives recording Quaternary history 34

 2.2.1.1 Oxygen isotope stages 35

 2.2.1.2 Climate change in both archives and implications: a synthesis 36

 2.2.1.3 Glaciological implications of Heinrich events 36

 2.2.1.4 A scenario of ice-sheet–climate–ocean interaction 37

 2.2.1.5 Terrestrial archives 37

 2.2.2 Dating Quaternary sediments 37

2.3 Resulting subdivision and timing of the Quaternary 40

 2.3.1 Terrestrial stratigraphy 41

 2.3.2 Quaternary cold-climate lithostratigraphy 41

 2.3.3 The Wolstonian ‘problem’ 42
CONTENTS

2.4 The depositional record of sea-level changes in glaciated terrains 44
2.5 Terrestrial sedimentary response to Quaternary climatic fluctuations 45
2.6 Implications for engineering geology 52
References 52

Chapter 3 Geomorphological framework: glacial and periglacial sediments, structures and landforms 59
3.1 Introduction 59
3.2 Terrain evaluation 60
3.3 Terrain classification 60
3.4 Engineering geological, glacial and periglacial ground models 62
 3.4.1 Engineering geological ground models 62
 3.4.2 Geomorphological landsystem models 65
 3.4.2.1 Glacial landsystems 65
 3.4.2.2 Periglacial landsystems 69
3.5 Glaciogenic sediment descriptors 78
 3.5.1.1 Subglacial traction till 83
 3.5.1.2 Glaciotectonite 86
 3.5.1.3 Supraglacial mass-flow diamicton/glaciogenic debris-flow deposit 89
 3.5.1.4 Melt-out till 91
 3.5.2.1 Rhythmites (non-genetic) 93
 3.5.2.2 Varves (seasonal rhythmites) 95
 3.5.2.3 Cycopels and cyclopsams (tidally influenced rhythmites) 97
 3.5.2.4 Turbidites 99
 3.5.2.5 Dropstone mud and plumes/silt and mud drapes (ice-rafter debris) 101
 3.5.2.6 Dropstone diamicton and glaciomarine varves (ice-rafter debris) 103
 3.5.2.7 Undermelt diamicton 105
 3.5.2.8 Iceberg-contact deposits (ice keel turbate, iceberg dump structures and mounds) 106
 3.5.2.9 Glaciogenic debris flow (debrises)/subaqueous slide and slump deposits (including cohesive and cohesionless) 108
 3.5.2.10 Subaqueous debris-fall deposits (including olistostromes) 111
 3.5.2.11 Palimpsest lags 113
 3.5.3.1 Hyperconcentrated flow deposits (jökulhlaup-type flood deposits) 114
 3.5.3.2 Gravel rhythmites (flood facies) 116
 3.5.3.3 Plane bed deposits 119
 3.5.3.4 Cross-bedded facies (dunes and antidunes) 120
 3.5.3.5 Ripple cross-laminations (including climbing ripple drift) 123
 3.5.3.6 Gravel sheets 126
3.6 Periglacial sediment descriptors 128
 3.6.1.1 Granular head deposits 129
 3.6.1.2 Clay-rich head deposits 131
 3.6.1.3 Slopewash deposits 133
 3.6.1.4 Fluvio-colluvial deposits 135
 3.6.1.5 Talus deposits 137
 3.6.1.6 Avalanche deposits 140
 3.6.1.7 Blockslope deposits 143
 3.6.1.8 Debris-flow deposits 145
 3.6.2.1 Sorted sand and gravel 147
 3.6.2.2 Channel scours 148
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.2.3 Fine-grained sediments and organic beds in channel fills and on floodplains</td>
<td>149</td>
</tr>
<tr>
<td>3.6.3.1 Fluvio-aolian sand</td>
<td>150</td>
</tr>
<tr>
<td>3.6.4.1 Loess</td>
<td>151</td>
</tr>
<tr>
<td>3.6.4.2 Coversand (sand-sheet deposits)</td>
<td>152</td>
</tr>
<tr>
<td>3.6.4.3 Dune sand</td>
<td>154</td>
</tr>
<tr>
<td>3.6.4.4 Niveo-aolian sand deposits</td>
<td>155</td>
</tr>
<tr>
<td>3.6.5.1 Blockfield deposits</td>
<td>158</td>
</tr>
<tr>
<td>3.6.5.2 Brecciated bedrock</td>
<td>161</td>
</tr>
<tr>
<td>3.7 Macrostructural, erosional and sediment architectural element descriptors</td>
<td>164</td>
</tr>
<tr>
<td>3.7.1.1 Clastic dykes, intrusions and hydrofracture fills</td>
<td>165</td>
</tr>
<tr>
<td>3.7.1.2 Soft sediment deformation and slump and loading structures</td>
<td>167</td>
</tr>
<tr>
<td>3.7.1.3 Dewatering structures</td>
<td>168</td>
</tr>
<tr>
<td>3.7.1.4 Microfluting</td>
<td>170</td>
</tr>
<tr>
<td>3.7.1.5 Boulder pavements</td>
<td>171</td>
</tr>
<tr>
<td>3.7.1.6 Canal fills</td>
<td>172</td>
</tr>
<tr>
<td>3.7.2.1 Glaciotectonic foliations</td>
<td>173</td>
</tr>
<tr>
<td>3.7.2.2 Glaciotectonic lineations</td>
<td>174</td>
</tr>
<tr>
<td>3.7.2.3 Glaciotectonic boudinage</td>
<td>175</td>
</tr>
<tr>
<td>3.7.2.4 Glaciotectonic shear zones</td>
<td>177</td>
</tr>
<tr>
<td>3.7.2.5 Glaciotectonic folds</td>
<td>178</td>
</tr>
<tr>
<td>3.7.2.6 Glaciotectonic faults and thrusts</td>
<td>180</td>
</tr>
<tr>
<td>3.7.2.7 Glaciotectonic grabens and half-grabens</td>
<td>183</td>
</tr>
<tr>
<td>3.7.3.1 P-forms</td>
<td>184</td>
</tr>
<tr>
<td>3.7.3.2 Lunate fractures</td>
<td>185</td>
</tr>
<tr>
<td>3.7.3.3 Crescentic gouges</td>
<td>186</td>
</tr>
<tr>
<td>3.7.3.4 Crescentic fractures</td>
<td>187</td>
</tr>
<tr>
<td>3.7.3.5 Chattermarks</td>
<td>188</td>
</tr>
<tr>
<td>3.7.3.6 Rat tails</td>
<td>189</td>
</tr>
<tr>
<td>3.7.3.7 Grooves, striations and polished surfaces</td>
<td>190</td>
</tr>
<tr>
<td>3.7.4.1 Channel elements</td>
<td>191</td>
</tr>
<tr>
<td>3.7.4.2 Downstream accretion elements</td>
<td>192</td>
</tr>
<tr>
<td>3.7.4.3 Lateral accretion elements</td>
<td>193</td>
</tr>
<tr>
<td>3.7.4.4 Gravel bar and bedform elements</td>
<td>194</td>
</tr>
<tr>
<td>3.7.4.5 Sediment gravity-flow elements</td>
<td>195</td>
</tr>
<tr>
<td>3.7.4.6 Sandy bedform elements</td>
<td>196</td>
</tr>
<tr>
<td>3.7.4.7 Laminated sand-sheet elements</td>
<td>197</td>
</tr>
<tr>
<td>3.7.4.8 Overbank fines elements</td>
<td>198</td>
</tr>
<tr>
<td>3.7.5.1 Periglacial involutions</td>
<td>199</td>
</tr>
<tr>
<td>3.7.5.2 Periglacial creep folds</td>
<td>200</td>
</tr>
<tr>
<td>3.7.5.3 Platy structures</td>
<td>201</td>
</tr>
<tr>
<td>3.7.5.4 Relict periglacial shears</td>
<td>202</td>
</tr>
<tr>
<td>3.7.5.5 Thermal contraction cracks</td>
<td>203</td>
</tr>
<tr>
<td>3.7.5.6 Ice-wedge pseudomorphs</td>
<td>204</td>
</tr>
<tr>
<td>3.7.5.7 Relict sand wedges</td>
<td>206</td>
</tr>
<tr>
<td>3.7.5.8 Composite-wedge pseudomorphs</td>
<td>207</td>
</tr>
<tr>
<td>3.7.5.9 Vertical to steeply dipping elongate clasts</td>
<td>208</td>
</tr>
<tr>
<td>3.7.5.10 Downslope-deflected strata</td>
<td>209</td>
</tr>
</tbody>
</table>
3.7.5.11 Gulls
3.7.5.12 Dip and fault structures
3.7.5.13 Superficial valley disturbances and valley bulges
3.7.5.14 Buried hollows
3.7.6 Superimposed or overprinted sedimentary and structural signatures
3.7.6.1 Interbedded diamictons and thin stratified lenses
3.7.6.2 Glaciectonite
3.7.6.3 Ice-wedge pseudomorph developed in glaciolacustrine sediments
3.7.6.4 Ground ice developed in refrozen mass-flow deposits
3.7.6.5 Periglacial involutions within refrozen mass-flow deposits
3.7.6.6 Banded massive ground ice beneath glacial diamicton
3.8 Microstructures in glacial and periglacial sediments
3.8.1 Periglacial microstructures in engineering soils
3.8.1.1 Relict periglacial shear microstructure
3.8.1.2 Platy or lenticular microstructure
3.8.1.3 Banded microstructure or ‘banded fabric’
3.8.1.4 Granular microstructure
3.8.1.5 Silt cappings microstructure
3.8.1.6 Vesicular microstructure
3.8.2 Periglacial microstructures superimposed on glaciogenic sediments
3.8.2.1 Platy or lenticular microstructure
3.8.2.2 Granular microstructure
3.8.2.3 Silt cappings microstructure
3.8.2.4 Calcitans microstructure
3.8.2.5 Clay cutans or ferri-argillans microstructure
3.8.2.6 Oriented clay domains microstructure
3.8.2.7 Banded microstructure
3.8.3 Glaciogenic sediment microstructures
3.8.3.1 Base of subglacial traction till
3.8.3.2 Base of subglacial mass-flow diamicton
3.8.3.3 Bedrock-rich subglacial traction till
3.8.3.4 Faulted lake sediments
3.8.3.5 Hydrofracture
3.8.3.6 Massive till
3.8.3.7 Soft-sediment deformation
3.8.3.8 Pseudo-stratified diamicton
3.8.3.9 Glaciectonite in lake sediments
3.8.3.10 Till over laminated lake sediments
3.8.3.11 Melt-out till
3.9 Terrain unit descriptors
3.10 Glacial landsystems
3.10.1 Areal scouring
3.10.1.1 Areal scouring
3.10.1.2 Glaciated valleys and glacial troughs
3.10.1.3 Hanging valleys
3.10.1.4 Arêtes
3.10.1.5 Glacial watershed breaches
3.10.1.6 Whalebacks
CONTENTS

3.10.1.7 Trough heads 255
3.10.1.8 Rock basins 256
3.10.1.9 Rock steps 257
3.10.1.10 Cirques (corrie or cwm) 258
3.10.1.11 Cols 259
3.10.1.12 Horns 260
3.10.1.13 Nunataks 261
3.10.1.14 Roche moutonnées 262
3.10.1.15 Röthlisberger channels 263
3.10.1.16 Crag and tail ridges 264
3.10.1.17 Riegel 265
3.10.1.18 Push and squeeze moraines 266
3.10.1.19 Dump moraines and ice-marginal aprons 267
3.10.1.20 Latero-frontal fans and ramps 268
3.10.1.21 Medial moraines 269
3.10.1.22 Hummocky moraine and controlled moraines 270
3.10.1.23 Ribbed terrain 271
3.10.1.24 Glacial erratics 272
3.10.1.25 Crevasse-fill ridges (including crevasse-squeeze ridges) 273
3.10.1.26 Megascale glacial lineations, megaflutes and megagrooves 274
3.10.1.27 Flutes 275
3.10.1.28 Drumlins 276
3.10.1.29 Glacial trimlines 277
3.10.2.1 Composite ridges and thrust block moraines 278
3.10.2.2 Hill–hole pairs 279
3.10.2.3 Cupola hills 280
3.10.2.4 Megablocks and rafts 281
3.10.3.1 Tunnel valleys, tunnel channels, rinnenäler 282
3.10.3.2 Lateral meltwater channels 283
3.10.3.3 Ice-marginal channels 284
3.10.3.4 Subglacial gorges 285
3.10.3.5 Nye channels 286
3.10.3.6 Eskers 287
3.10.3.7 Kame mounds 288
3.10.3.8 Kame terraces 289
3.10.3.9 Valley trains 290
3.10.3.10 Sandar/outwash fans and plains 291
3.10.3.11 Pitted sandar (kettled outwash plain) 292
3.10.3.12 Kettle holes/ponds 293
3.10.3.13 Iceberg melt-out pits and scours 294
3.10.4.1 Morainal banks and coalescent subaqueous fans 295
3.10.4.2 De Geer (washboard) moraines 296
3.10.4.3 Ice-shelf moraines 297
3.10.4.4 Shorelines or strandlines 298
3.10.4.5 Fjords 299
3.10.4.6 Submarine troughs (cross-shelf troughs) 300
3.10.4.7 Grounding line or subaqueous outwash fans 301
3.10.4.8 Grounding-zone wedges 302
3.10.4.9 Trough-mouth fans 303
3.10.4.10 Ice-contact deltas 304
3.10.4.11 Gilbert-type deltas 305
3.10.4.12 Hjulström-type deltas 306

3.11 Periglacial landsystems 307
 3.11.1.1 Blockfields/felsenmeer 308
 3.11.1.2 Frost-patterned ground 309
 3.11.1.3 Periglacial trimlines 310
 3.11.1.4 Tors 311
 3.11.1.5 Deflation scars 312
 3.11.1.6 Deflation surfaces 313
 3.11.1.7 Wind stripes 314
 3.11.1.8 Wind crescents 315
 3.11.2.1 Solifluction sheets and aprons 316
 3.11.2.2 Solifluction lobes 317
 3.11.2.3 Solifluction benches and terraces 318
 3.11.2.4 Ploughing boulders 319
 3.11.3.1 Talus accumulations and slopes 320
 3.11.3.2 Rock glaciers 321
 3.11.3.3 Protalus ramparts and pronival ramparts 322
 3.11.3.4 Cryoplanation terraces 323
 3.11.3.5 Nivation hollows 324
 3.11.3.6 Cliffs 325
 3.11.4.1 Periglacial debris flows 326
 3.11.4.2 Periglacial debris cones 327
 3.11.4.3 Boulder sheets and lobes 328
 3.11.4.4 Alluvial fans 329
 3.11.5.1 Periglacial river terraces 330
 3.11.5.2 Dry valleys 331
 3.11.5.3 Relict frost mounds/relict ramparted ground-ice depressions: pingos 332
 3.11.5.4 Relict frost mounds/relict ramparted ground-ice depressions: palsas and lithalsas 333
 3.11.5.5 Large relict thermokarst depressions 334
 3.11.5.6 Cambered strata 335
 3.11.6.1 Buried valleys 336

3.12 Slope failures in glaciated and periglaciated terrains 337
 3.12.1 Active-layer slides (shallow translational slides) 338
 3.12.2 Retrogressive thaw slumps 339
 3.12.3 Deep-seated rotational slides 340
 3.12.4 Translational rockslides 341
 3.12.5 Rockfalls and rock avalanches 342
 3.12.6 Mountain slope deformation (deep-seated gravitational failures) 343
 3.12.7 Sensitive clay spreads and flowslides 344

Photo credits 345
References 345
Quaternary Research Association (London) Field Guides 366
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2.1 Periglacial environments</td>
<td>502</td>
</tr>
<tr>
<td>5.1.2.2 Permafrost</td>
<td>502</td>
</tr>
<tr>
<td>5.1.2.3 Paraglacial landscape modification</td>
<td>504</td>
</tr>
<tr>
<td>5.1.3 Ground ice</td>
<td>505</td>
</tr>
<tr>
<td>5.1.3.1 Occurrence</td>
<td>505</td>
</tr>
<tr>
<td>5.1.3.2 Pore ice</td>
<td>506</td>
</tr>
<tr>
<td>5.1.3.3 Segregated ice</td>
<td>506</td>
</tr>
<tr>
<td>5.1.3.4 Intrusive ice</td>
<td>507</td>
</tr>
<tr>
<td>5.1.3.5 Wedge ice</td>
<td>508</td>
</tr>
<tr>
<td>5.1.4 Periglacial disturbance, periglacial debris system and frost susceptibility</td>
<td>508</td>
</tr>
<tr>
<td>5.1.4.1 Periglacial disturbance</td>
<td>508</td>
</tr>
<tr>
<td>5.1.4.2 Periglacial debris system</td>
<td>508</td>
</tr>
<tr>
<td>5.1.4.3 Frost susceptibility</td>
<td>509</td>
</tr>
<tr>
<td>5.1.5 Periglacial landsystems, terrains and regions</td>
<td>509</td>
</tr>
<tr>
<td>5.1.5.1 Periglacial landsystems</td>
<td>509</td>
</tr>
<tr>
<td>5.1.5.2 Periglacial regions</td>
<td>510</td>
</tr>
<tr>
<td>5.2 Lowland periglacial terrains</td>
<td>513</td>
</tr>
<tr>
<td>5.2.1 Lowland periglacial landsystems</td>
<td>513</td>
</tr>
<tr>
<td>5.2.1.1 Chronology</td>
<td>513</td>
</tr>
<tr>
<td>5.2.1.2 Environmental conditions and permafrost extent</td>
<td>515</td>
</tr>
<tr>
<td>5.2.1.3 Permafrost thickness</td>
<td>516</td>
</tr>
<tr>
<td>5.2.2 Lowland plateau landsystems</td>
<td>516</td>
</tr>
<tr>
<td>5.2.2.1 Weathering profiles (brecciated bedrock)</td>
<td>516</td>
</tr>
<tr>
<td>5.2.2.2 Cold-climate aeolian deposits and erosional features</td>
<td>521</td>
</tr>
<tr>
<td>5.2.2.3 Involutions</td>
<td>523</td>
</tr>
<tr>
<td>5.2.2.4 Large-scale frost-patterned ground</td>
<td>523</td>
</tr>
<tr>
<td>5.2.2.5 Periglacial-karst features</td>
<td>525</td>
</tr>
<tr>
<td>5.2.3 Sediment-mantled hillslope landsystems</td>
<td>528</td>
</tr>
<tr>
<td>5.2.3.1 Deformed weathered bedrock</td>
<td>528</td>
</tr>
<tr>
<td>5.2.3.2 Relict periglacial slope (head) deposits</td>
<td>530</td>
</tr>
<tr>
<td>5.2.3.3 Cambered strata and widened vertical joints (gulls)</td>
<td>533</td>
</tr>
<tr>
<td>5.2.4 Rock-slope landsystems</td>
<td>537</td>
</tr>
<tr>
<td>5.2.5 Slope-foot landsystems</td>
<td>537</td>
</tr>
<tr>
<td>5.2.5.1 Sediment lobes</td>
<td>538</td>
</tr>
<tr>
<td>5.2.5.2 Alluvial fans</td>
<td>538</td>
</tr>
<tr>
<td>5.2.5.3 Aprons, sheets or remnant patches of head deposits</td>
<td>538</td>
</tr>
<tr>
<td>5.2.5.4 Deep-seated landslides</td>
<td>538</td>
</tr>
<tr>
<td>5.2.6 Valley landsystems</td>
<td>541</td>
</tr>
<tr>
<td>5.2.6.1 Superficial valley disturbances (bedrock)</td>
<td>541</td>
</tr>
<tr>
<td>5.2.6.2 Dry valleys, slopewash and fluvio-colluvial deposits</td>
<td>542</td>
</tr>
<tr>
<td>5.2.6.3 Periglacial fluvial deposits and river terraces</td>
<td>544</td>
</tr>
<tr>
<td>5.2.6.4 Thermal contraction crack structures</td>
<td>547</td>
</tr>
<tr>
<td>5.2.6.5 Relict frost mounds</td>
<td>549</td>
</tr>
<tr>
<td>5.2.6.6 Large relict thermokarst depressions</td>
<td>552</td>
</tr>
<tr>
<td>5.2.7 Buried landsystems</td>
<td>552</td>
</tr>
<tr>
<td>5.2.8 Submerged landsystems</td>
<td>553</td>
</tr>
<tr>
<td>5.2.8.1 Southern North Sea Basin</td>
<td>553</td>
</tr>
<tr>
<td>5.2.8.2 English Channel (La Manche)</td>
<td>553</td>
</tr>
</tbody>
</table>
5.2.9 Typical lowland ground models
5.2.9.1 Limestone plateau-clay vale ground model 555
5.2.9.2 Caprock plateau-mudstone valley ground model 558

5.3 Upland periglacial terrains 558
5.3.1 Upland periglacial landsystems: chronology and environment 558
5.3.2 Upland plateau landsystems
5.3.2.1 Blockfields, trimlines and tors 558
5.3.2.2 Frost-patterned ground 563
5.3.2.3 Aeolian landforms and deposits on high plateaux 564
5.3.3 Sediment-mantled hillslope landsystems 564
5.3.4 Rock-slope landsystems
5.3.4.1 Rock-slope failures 566
5.3.4.2 Talus accumulations 568
5.3.4.3 Rock glaciers and protalus ramparts 569
5.3.5 Slope-foot landsystems 569
5.3.5.1 Periglacial valley-fill deposits 569
5.3.5.2 Snow avalanche deposits 571
5.3.5.3 Debris flows and debris cones 571
5.3.5.4 Alluvial fans 573
5.3.6 Terrain models and typical upland ground models 573

5.4 Conclusions 577
References 583

Chapter 6 Material properties and geohazards 599
6.1 Introduction 599
6.2 Ice-related terrains: subglacial, supraglacial and glaciated valley 600
6.2.1 Tills 600
6.2.1.1 Introduction 600
6.2.1.2 Glacial till stratigraphy 603
6.2.1.3 Geotechnical properties 621
6.2.1.4 Geotechnical properties 627
6.2.1.5 Weathering of glacial tills 633
6.2.2 Eskers, kames and kame terraces 641
6.3 Water-related domains (fluvial, lacustrine and marine): glaciofluvial, glaciolacustrine and glaciomarine 641
6.3.1 Sands and gravels 641
6.3.2 Glaciolacustrine deposits 641
6.3.2.1 The glacial lake environment 641
6.3.2.2 Glaciolacustrine deposits and depositional processes 643
6.3.2.3 Geotechnical properties 644
6.3.2.4 Geohazard behaviour 647
6.3.2.5 UK lithostratigraphy 658
6.3.3 Quick clay 658
6.3.4 Ice-rafted debris (including dropstones) and iceberg-contact deposits 662
6.4 Ice-front-related terrains: glaciotectonic and ice marginal
6.4.1 Deformed/shattered bedrock 663
6.4.2 Subglacial deformation of soils 663
6.5 Upland periglacial terrains 664
6.5 Boulder fields and tongues 664
6.6 Lowland periglacial terrains 664
6.6.1 Solifluxion deposits and colluvium 664
6.6.2 Periglaciated rock surfaces 669
6.6.3 Ice-wedge pseudomorphs and involutions 670
6.6.4 Loessic deposits/brickearth 670
6.6.4.1 Distribution and identification 670
6.6.4.2 Composition 673
6.6.4.3 Geotechnical properties 673
6.6.4.4 Geohazards associated with loessic deposits 674
6.6.4.5 Engineering treatment 678
6.7 Local geohazards 678
6.7.1 Superficial valley disturbances: cambering, gulls and valley bulging 678
6.7.1.1 Engineering aspects 680
6.7.2 Solifluxion shears 682
6.7.3 Kettle holes 683
6.7.4 Relict cryogenic mounds 683
6.7.4.1 Characteristics of the relict forms 683
6.7.4.2 Occurrence in the UK 684
6.7.4.3 Processes of formation 684
6.7.4.4 Engineering geological characteristics 685
6.7.4.5 Mitigation measures 685
6.7.5 Relict scour hollows 685
6.7.5.1 Occurrence 687
6.7.5.2 Formational processes 687
6.7.5.3 Engineering geological characteristics 687
6.7.5.4 Mitigation measures 687
6.8 Regional geohazards 689
6.8.1 Neotectonics: differential crustal movements across SE England during the Holocene following deglaciation 689
6.8.1.1 The eustatic record 691
6.8.1.2 The isostatic record 691
6.8.1.3 Case studies of two areas 691
6.8.1.4 Summary of eustatic changes in SE England 697
6.8.2 Quaternary palaeoseismicity 698
6.9 Summary and conclusions 701
Appendix 6.1 Summary description of British till formations and members
A6.1.1 Caledonia Glacigenic Group (CALI) 703
A6.1.2 Albion Glacigenic Group (ALBI) 710
Appendix 6.2 Additional Geotechnical Plots 713
Appendix 6.3 Particle Size Distribution and SPT ‘N’ Value Depth Plots by 100 km Grid Square 721
References 732

Chapter 7 Engineering investigation and assessment 741
7.1 Introduction 742
7.2 Preliminaries 742
7.2.1 Desk studies and field reconnaissance 743
7.2.2 Remote sensing (RS) and geographical information systems (GIS) 743
7.2.3 Engineering geological and geomorphological mapping 746
7.2.4 Use of archaeology 748
7.2.4.1 Tools 749
7.2.4.2 Interpretation 750
7.2.4.3 Case studies 753
Case Study 7.1: Dogger bank 753
Case Study 7.2: Olympic Park 756
7.2.4.4 Conclusions 759
7.2.5 Additional requirements for planning offshore and nearshore SI 759
7.2.5.1 Phases of site investigation 759
7.2.5.2 Nature of deposits 759
7.2.5.3 Weather and the management of risk 760
7.2.5.4 Gas risk 760
7.2.5.5 Additional standards 760
7.3 Near-surface geophysics 760
7.3.1 Geophysical techniques and the physical properties of glacial and periglacial materials 761
7.3.2 Physical properties of glacial and periglacial materials 761
7.3.2.1 Fines (clays and silts) 761
7.3.2.2 Sands 761
7.3.2.3 Gravels 763
7.3.2.4 Diamicton 763
7.3.3 Geophysical techniques 763
7.3.4 Marine geophysical investigation: additional considerations 765
7.3.5 Conclusions for best practices with geophysical surveying 765
7.4 Soil and rock descriptions 767
7.4.1 Introduction 767
7.4.2 Grain size 771
7.4.3 Consistency 772
7.4.4 Widely graded soils 772
7.4.5 Coarse and very coarse fractions 773
7.4.6 Bedding 774
7.4.7 Discontinuities 775
7.4.8 The soil–rock boundary 775
7.4.9 Expectations from the conceptual model 775
7.5 Ground investigation 775
7.5.1 Introduction: issues with the investigation of glacial and periglacial deposits 776
7.5.2 Planning investigations 776
7.5.2.1 Defining investigation objectives 776
7.5.2.2 Conceptual models of the ground 777
7.5.3 Choice of ground investigation techniques and plant applicable to glacial and periglacial deposits 778
7.5.4 Offshore and nearshore intrusive investigations 778
7.5.4.1 Nearshore delivery systems 783
7.5.4.2 Offshore delivery systems 783
7.5.5 Resolution of data 784
7.5.6 Choice of sampling and laboratory testing 786