Index

Figures are shown in italic, tables in bold.

age, cutting failures 41
 delayed failure 44, 46, 47, 48, 51
age, earthwork failures 143
age, geotechnical assets 34
air voids, testing 22–28
 see also voids
anode pull-out test 133
anodes as soil nails 126
archive, geotechnical information 35
asphalt planings, recycled 73, 76
asset condition information 37
 data analysis and reporting 38, 39
 data approval 37–38
 data management 35–36
 management strategy 33
 risk assessment 37, 38
 standards and advice 33–35
asset management, earthworks 2, 28–31
 UK highways agency 33–39
Atterberg limits 132, 133, 153
back analysis 42, 43, 44, 53
Bill of Quantities 175, 179
Biological and Engineering Impacts of Climate Change (BIONICS) 142
BIONICS embankment project
 151–153
 climate control system 156
 construction 151–153
 fill 153–154
 high capacity tensiometer 156–157
 instruments used 154–156
 numerical modelling 159–160
 results 157–159
Bishop’s Simplified Method 13
blast furnace slag 112–113
borehole archive 35
British Standards 9, 14
 BS 6031: Code of Practice 5–7
 BS 8006 soil 9
Brogborough, clay pit 101, 102, 103
tyre bale embankment 107
Burland’s triangle, risk management 22
California Bearing Ratio test 83, 85, 91
carbon calculation and design 166
carbon calculator 164
carbon dioxide 165, 166
carbon emissions 164, 172, 175–180
carbon footprint 3, 163, 166–169, 170
cathode discharge, electrokinetics 131
cementation 133, 138
CEN [European Committee for Standardization] 7, 9, 14
technical committees 10
Chigwell cutting, failure 141
clay in fill 64, 65
clay, failure in 41–52
clay, stability analysis 17–18
climate change, impact 3, 21
 on infrastructure 151, 160
 on soil moisture deficit 141
climate monitoring 156
clod and matrix 137, 138
code of practice 2, 5–7, 9
cohesive soil 82, 86
cohesive tills, compaction 81
colliey spoil 73, 74, 76, 110–111
compacted fill, pore water profiles 159
compaction 22–28, 81
 see also intelligent compaction
compaction control 57, 58–59, 60, 96
compaction curve 153
compaction tests 70–71
compactomer 68–69
compression 97
construction industry and carbon emission 164, 172
continuous compaction control 69, 71, 72, 96
counterfort drains in head deposits 148
counterfort drains in overconsolidated clay 115–124
case study 117–122
 construction 115, 116, 117
 design 116–117, 123–124
 efficiency 116, 119, 121
 evaluation 122–124
critical failure surfaces 17
cut and fill 1
cutting construction, carbon emissions 178, 179–180
cutting failure, review (UK Highways Agency)
 age 49–50
 asset base 41, 47
 geology 47–50
cutting height and stress ratio 44
cutting length and failure age 49, 50
cutting, slope failure 30, 31, 141
cuttings, risk of failure 41–53
 age effects 41, 44, 46, 47, 48, 51
 geological formations 42–43, 47–50
 mechanism 41–42
 risk identification 43–44, 45, 50–53
Czech Republic, D47 and R48 road works 109–113
Czech standards for earthworks 61–65
 categories 61–62
 excavatability 62–63
 fill 64–65
 footings 62
 revision 61, 65
 safety factor 62
 secondary materials 63–64
 soil binders 64
Darcy’s Law 126
data exchange and intelligent compaction 69
data management 28–29
density evolution 71
design and construction 2
design and testing 10
design approach in Europe 14
Drainage Data Management System 36

earth fill 56, 59–60
earthwork failures 125, 127, 143
earthworks, environmental impact 163–172
earthworks, historic 1–2
earthworks, lifecycle 6
earthworks, performance 28–31
earthworks, whole life cost 165
electrical energy 133, 135
electrode array, electrokinetics 127, 130, 134
electrokinetic geosynthetics in embankment stabilization 3, 125–139
analysis and results 131–138
principal processes 126–127
trial 127–131
electrokinetic soil nails 3
electroosmotic flow 126, 127, 129, 135, 137
embankment dams 1
embankment failure 30
embankment and seismic force 166, 167, 168
embankment of tyre bales 76, 103–108
embankment remediation 16–18
embankment structure 55
London Clay 137
embankment, Victorian 127, 152
embankments, overconsolidated clay 93–100
Embodied Carbon Emissions calculation 175–180
embodied energy 165–169
Embodied Energy calculation 175–180
emissions in highway construction 175–180
embankment for new road 179–180
embodied energy review 175–179
flow chart 176
EN [European Standards] 1997 9–12
end-product specification 22, 23, 25, 26, 27
energy calculation 176–177, 178–180
Enslin-Neff water absorption test 98, 99, 100
environmental impact assessment 3, 163–173
carbon footprint 166–169
indicators 165–166
mitigation and planning 164–165
performance-based design 166, 172
strategic guidance 163–164
study example 171–172
environmental protest 164
erosion management 165
Eurocode 7 2, 6–7, 9–18
and British Standards 9
and Czech standards 62, 65
safety and partial factors 11–16
technical committees 9, 10
European Committee for Standardization see CEN
European Standards see EN
excavatability, classification 62–63
failure 1, 2
deep-seated 41–53
due to compaction 23
in older embankments 125, 127

INDEX
in overconsolidated clay 117, 120
mechanism 41–42
slope 141
field capacity 142
fill 1, 2, 95, 96
archaic (chaotic) behaviour 68, 69, 71
Atterberg limits 132, 133, 153
classification 56
construction 55–56
fly ash 63–64, 74, 95, 111
flysch 93, 98–100
glacial soil 79
grading 56, 59
granular 81
industrial waste 109–113
lightweight 64–65, 73–75, 76, 103–108
overconsolidated clay 96–99
random 57–60
recycled waste 72–76
reinforced 65
fire risk 74–75, 105, 110
flooding contingency 29–30
fly ash (PFA) 73, 76
as fill 63–64, 74, 95, 103, 111, 112
flysch as fill 93, 95, 96, 98, 99, 100
footings, spread 62
gabion wall design 16–17
geochemical formations, and failure 42–44, 46, 47–50, 52
geosynthetics 126
Geotechnical Asset Management (UK Highways Agency) 33–39
database analysis and reporting 38, 39
Geotechnical Data Management System (UK Highways Agency) 28, 29, 30, 35–37
failure in clay 43, 44
review of asset base 47
and geology 47–50
review by age 49–50
geotechnical design, codes of practice 2, 5–7, 9
geotechnical risk 21–31
gotechnics of pavements 67–76
materials 72–75
techniques 75–76
glacial soil in fill 79
grading of fill 56, 59
greenhouse gas emissions 164, 165
groundwater analysis 132
groundwater, tyre-bale leachate 74

gypsum 109, 113
gypsum in fill 56, 57, 58, 59–60
hazards and highways 29
Helmholz-Smoluchowski model 126
Highways Agency see under UK
hummocky ground 101
hydraulically bound materials 73
inclinometer 128, 135, 136, 147, 154, 155
industrial waste in fill 63–64, 109–113
infiltration monitoring 159–160
installations and energy calculation 176–177, 178–180
intelligent compaction 67–68
assessment 70
documentation 69
materials used 72–75
roller function 68–70, 76
roller matrix 70
standardization 71
techniques 75–76
International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) 67–76
inventory, maintenance cycle 37
Ireland, road construction case studies 79–91
A4/A5 County Tyrone 89–91
M3 County Meath 88–89
N8 County Tipperary 86–88
selection of fill
moisture condition value 81–85
specification 80–81
ISSMGE 67–76
laboratory test, overconsolidated clay 97–99
leachate from tyre bales 74
London Clay 117, 123, 142
delayed failure 42, 43, 49
lightweight embankment fill 103–108
lime, binder 111, 113
lime, conditioning fluid 126, 132
lime, use in fill 63–64, 74
limit state philosophy 9
liquid limit 82, 87, 88, 89, 90
load transfer platform 102–103, 104
loess in fill 63–64
Lower Lias Clay, delayed failure 42, 50
magnetic extensometers 154, 155, 158
marginal materials in fill 56, 58, 59
material and energy calculation 176–177, 178, 179
material, handling procedure 27
mattressing 81
Maxit 103, 104, 105, 108
Meteorological Office, soil moisture deficit 142, 148
method approach 22, 26, 27
methylen blue test 98, 99, 100
modulus 68, 70, 71
moisture condition value 79–80, 84, 86, 87–88, 90
acceptable materials 83–84
limitations 82–83
historical use 81–82
relationship testing 84–85
monitoring for performance
earthworks 28–31
new build 22–28
monitoring, counterfort drains 118–122
monitoring, using soil moisture deficit 141–149
morphology factor 44, 45, 48, 53
Moste power plant 94–95
motorway construction and carbon footprint 169, 170
muckshift 1
National Annexes 9, 10, 11, 18
national rail network (UK), failures 143
National Roads Authority (Republic of Ireland) 79, 80, 82, 91
INDEX 183
Network Rail 5–6, 125
non-plastic materials 82
Nurek Dam 1
oil shale 73, 74, 76
overconsolidated clay in embankments 93–100
laboratory tests 97–99
water content 95–99
overconsolidated clay, counterfort drains 115–124
case study 117–122
partial factors and design values 10, 11–16
application 12, 14, 15
particle size 56, 153
performance and risk 21–31
performance-based design 166, 172
PFA (pulverised fuel ash) see fly ash
piezometer 128, 132, 147, 148, 154, 155
layout and monitoring 118–123
Pitt Review 29
plant species on embankment (UK) 152
plastic limit 79, 82–83, 87, 88, 89, 90
plastic materials 82
plasticity index test 82, 84, 86, 87
plasticity, clay 133, 135
pollution from run-off 165
pollution, carbon emission 178, 179
polystyrene, expanded, use in fill 65
pore water pressure 41–42, 44, 47, 50, 51
in counterfort drains 115–124
in electrokinetics 126, 127, 135, 137, 138
monitoring 151–161
soil moisture deficit 142, 144, 145, 146–148
and vegetation 143–146
porosity of fill 57
Portancemeter 71, 73
PRESTAB in earthworks 112, 113
probe locator 157
Proctor test 96, 98
Proctor Test, Modified 57, 60
pulverised fuel ash (PFA) see fly ash
rainfall 151, 157, 158
annual increase 120, 122
and soil moisture deficit 148
recycled materials as fill 72–75, 76
remedial work, counterfort drains 118–122, 123
reports, archive of 35
Republic of Ireland, National Roads Authority 79, 80, 82, 91
risk management 21, 22, 23, 26, 37, 38
risk of delayed failure 41–53
risk, contractual 2
risk, ranking of 52–53
road construction regulations, Spain 55–60
Road Research Laboratory (UK) 22–23
Road Service of Northern Ireland 89–90
rock fill 57–58, 59–60, 79, 95, 96
rock, excavatability 63
rock, safety factor 62
Rooks Nest Farm 144, 145
case study, targeted monitoring 146–148
rutting test 59
safe design and construction 1–2
safety calculations 11–16
safety factor, slope design 62
salts in fill 56, 57, 58, 59–60
settlement, monitoring 159, 160
Sevenoaks, cutting failure 146–148
shear strain 42
shear strength and moisture content 84–85
shear strength, safety factor 62
slag, blast furnace 112–113
slip, circular 11, 13, 135
slope angle 65
 cutting height 48, 51
 and time to failure 46
slope design, application of partial factors 10–14, 15
slope design, safety factor 62
slope stability
 analysis 16, 17
 assessment 10–11, 83
electrokinetic treatment 135, 137
 failure mechanism 127
 risk identification 37, 43–44, 45, 46, 48, 51
 and soil moisture deficit 141, 142, 143
Slovenia, national motorway programme 93–100
 fill material 96–99
 monitoring 99
 pre-1994 93–95
 technical specification 95–96, 100
soil compaction testing 22–28
soil mechanics, intelligent compaction 67–76
soil moisture deficit, use in targeted monitoring 141–149
 case studies 146–148
 pore pressure and vegetation 143–146
 slope failure 142–143
soil nails 126, 133, 135, 138
soil properties, changes 133
soil suction 97–99, 100
soil, binders 64
soil, BS 8006 9
soil, chaotic behaviour 71
soil, excavatability 63
soil, safety factor 62
soil, sustainable use 165
South Greenford trial, electrokinetics 127–131
 results and analysis 131–138
Spanish regulations, road construction PG3 2002
 55–60
classification 56
 compaction control 57, 58–59
earth fill 56, 59–60
 fill 55–56
 grading 56
random fill 58–60
rock fill 57–58, 59–60
spontaneous combustion test 110
stability analysis 16–18
 stability limits 43–44, 45, 48, 52
Standard Penetration Test 85, 86, 91, 131, 133
standards, UK Highways Agency 33–35
statistical analysis 23, 26, 31

INDEX

Stratford landrise 171–172
 strength, cohesive tills 79–80, 82, 83, 84, 88, 91
 strength, London Clay 133, 135, 138
 strength, PRESTAB 112
 stress ratio and cutting height 44
suction 138, 160
 counterfort drains 118, 121, 122, 124
 vegetation 142, 145–146
suction level monitoring 156, 159
supply chain and carbon footprint 166
sustainable development strategy 163–164, 166
swelling pressure 95, 97, 99
swelling, fly ash 111
swell-shrink cycles 142, 143, 154, 160
tension cracks 37
tensionmeter 156–157
Thames tunnel, high speed rail link 171–172
till, cohesive 79
timber support 6
Tokyo area, road embankment 166, 167, 168
topsoil resources 165
trafficability 22, 83–84, 85, 91
 translation slide, safety factor 13
transport, energy calculation 176–177, 178, 179
trees and soil moisture deficit 142, 143, 145–146, 148
tunnel construction and carbon footprint 169
tunnel spoil disposal 3, 169–172
tyre bales in embankments 101–108
 construction 104–105, 107
 fire risk 105
 monitoring 106
 physical properties 106
tyre bales in road construction 73–75, 76

United Kingdom (UK)
Environment Agency, carbon calculator 166
Highways Agency 5–6, 33–39
 code of practice, revision 5–9
 cost assessment of assets 38–39
 cuttings at risk 41–54
 data acquisition 35, 36–37
 embodied energy review 175
 environmental impact 164, 165
g eotechnical assets management 33–39
 slope movement monitoring 142
 specification for highway works 79, 81, 152
 see also under Geotechnical Data Management
UK national rail network 143
Network Rail 5–6, 125
UK Road Research Laboratory 22–23
UK road schemes
 A421 road improvement 101–108
 embankment fill 103–108
 site evaluation 101–103
tyre bale evaluation 108
M11 Chigwell cutting 117–120
M11 junction 4–5 141
M25 junction 28 141
M25 junction 5–6 144
M25 junctions 2A–1 146–148
M26 Sevenoaks cutting 117, 120–122
Upper Lias Clay, delayed failure 42, 43, 44, 47, 48, 49, 51

vegetation 154, 159, 160
colonization of species 152, 164
soil moisture deficit 142, 143–146, 148
voids in fill 63, 75, 81, 82, 142
monitoring and testing 22, 23–28

INDEX

waste and environment 164, 165
waste recycling in construction 73, 76
Czech Republic 109–113
tyres in UK 104, 105
waste to landfill 171
water content, overconsolidated clay 95–99
water during construction 81, 87, 91
water run-off 165