Contents

<table>
<thead>
<tr>
<th>Foreword</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xi</td>
</tr>
</tbody>
</table>

Introduction

Bell, F. G., Culshaw, M. G., Forster, A. & Nathanail, C. P. The engineering geology of the Nottingham area, UK

Geology of Megacities and Urban Areas

De Mulder, E. & Pereira, J. J. Earth Science for the city

Marker, B. R. Geology of megacities and urban areas

Legacy of the Past and Future Climate Change

Rees, J. G., Gibson, A. D., Harrison, M., Hughes, A. & Walsby, J. C. Regional modelling of geohazard change

Nathanail, J. & Banks, V. Climate change: implications for engineering geology practice

Urban Landslides

Petley, D. N. On the impact of urban landslides

Planning and Geohazards

Mora, S. Disasters are not natural: risk management, a tool for development

Gibson, A. D. & Chowdhury, R. Planning and geohazards

Urban Site Investigation

Clayton, C. R. I. Urban site investigation

Green, J. A. & Hellings, J. Developments in urban site investigation

Dereliction, Pollution and Contaminated Land

Nathanail, C. P. The role of engineering geology in risk-based land contamination management for tomorrow’s cities

Scott, D. I. & Hatheway, A. W. The management of derelict, polluted and contaminated land

Environmental Urban Geotechnics

Jefferson, I. & Braithwaite, P. Environmental urban geotechnics

Substructures and Underground Space

Rogers, C. D. F. Substructures, underground space and sustainable urban environments

Hunt, D. & Chapman, D. Substructures and underground space

Geodata for the Urban Environment

Hack, R. Advances in the use of geodata for the urban environment
REEVES, H. J. & WEST, T. R. Geodata for the urban environment 209

Infrastructure for the City and its Region

VIGGIANI, G. M. B. & DE SANCTIS, L. Geotechnical aspects of underground railway construction in the urban environment: the examples of Rome and Naples 215

SHARPE, L. & ALLENBY, D. Challenges for regional infrastructure: acceptable risk, prioritization of repair and vulnerability reduction 241

Resources for the City

SCHOUENBORG, B., TANG, L. & ÅKESSON, U. Resources for the city: sustainable use of bedrock resources for concrete production with examples from Sweden 257

Cripps, J. C. Resources for the city 265

The Future of Engineering Geology

TEPEL, R. E. The core attributes of engineering geology: a US perspective 273

GRIFFITHS, J. S. Engineering geology core values: a UK perspective 277

INOUÉ, D., OSHIMA, H., JSEG RESEARCH PLANNING COMMITTEE & JSEG INTERNATIONAL COMMITTEE. A perspective on the future of engineering geology in the world, Asia and Japan 281

BOCK, H. Core values, competences and issues in engineering geology: a European perspective 287

BAYNES, F. J., GRIFFITHS, J. S. & ROSENBAUM, M. S. The future of engineering geology 297

Index 303

The Geological Society endeavours to ensure that all images published contribute to the objectives of the individual papers in which they appear. In presenting pictures that illustrate a particular technical point it is recognized that authors select pictures from their own archives and from those of others. Occasionally these may illustrate practices in respect of health and safety that may not conform to current best practice in the developed world. This may be due to the age of the particular picture or the region in which it was captured – in either case the near-impossibility of replacing it is recognized by a ‘hands-off’ approach to the inclusion or otherwise of such pictures. The inclusion of such images should not be taken as an endorsement of the practices depicted by The Geological Society, the Authors or any other person or body.