Aggregates

Sand, gravel and crushed rock aggregates for construction purposes

(third edition)
It is recommended that reference to this book should be made in the following way:

Aggregates

Sand, gravel and crushed rock aggregates
for construction purposes
(third edition)

PREVIOUS EDITION EDITED BY

M. R. SMITH
The Institute of Quarrying, Nottingham

&

L. COLLIS
Sandberg, London (retired)

THIRD EDITION REVISED BY

P. G. FOOKES Consultant, Winchester
J. LAY RMC Aggregates (UK) Limited, Bromsgrove
I. SIMS STATS Limited, St. Albans
M. R. SMITH The Institute of Quarrying, Nottingham
G. WEST TRL, Crowthorne (retired)

2001
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Geological Society of London was founded in 1807 and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth' and is now Britain's national society for geology.

Both a learned society and a professional body, the Geological Society is recognized by the Department of Trade and Industry (DTI) as the chartering authority for geoscience, able to award Chartered Geologist status upon appropriately qualified Fellows. The Society has a membership of more than 9000, of whom about 1500 live outside the UK.

Fellowship of the Society is open to persons holding a recognized honours degree in geology or a cognate subject, or not less than six years' relevant experience in geology or a cognate subject. A Fellow with a minimum of five years' relevant postgraduate experience in the practice of geology may apply for chartered status. Successful applicants are entitled to use the designatory post-nominal CGeol (Chartered Geologist). Fellows of the Society may use the letters FGS. Other grades of membership are available to members not yet qualifying for Fellowship.

The Society has its own Publishing House based in Bath, UK. It produces the Society's international journals, books and maps, and is the European distributor for publications of the American Association of Petroleum Geologists (AAPG), the Society for Sedimentary Geology (SEPM) and the Geological Society of America (GSA). Members of the Society can buy books at considerable discounts. The Publishing House has an online bookshop (http://bookshop.geolsoc.org.uk).

Further information on Society membership may be obtained from the Membership Services Manager, The Geological Society, Burlington House, Piccadilly, London WIV 0JU (E-mail: enquiries@geolsoc.org.uk; Tel: + 44 (0) 207 434 9944).

The Society's Web Site can be found at http://www.geolsoc.org.uk/. The Society is a Registered Charity, number 210161.
Contents

Foreword to the 3rd edition ... xv
Preface ... xvi
Working Party Members .. xvii
Acknowledgements ... xviii

1. Introduction

1.1. Background .. 1
1.2. Objectives .. 2
 1.2.1. First edition 1985 ... 2
 1.2.3. Third edition 2001 .. 4
1.3. Geographical factors .. 4

Reference ... 4

2. Occurrences and associations of sources

2.1. Introduction .. 5
2.1.1. Rock and rock categories 5
2.1.2. Geological time scale and the rock sequence 5
2.2. Aggregates from the igneous and metamorphic rocks
 2.2.1. Igneous rock .. 7
 2.2.2. Metamorphic rock .. 10
2.3. Aggregates from the sedimentary rocks
 2.3.1. Limestone ... 11
 2.3.2. Sandstone ... 12
 2.3.3. Other sedimentary rocks and natural waste materials . 14
2.4. Occurrence of sand and gravel, and of conglomerates
 2.4.1. Factors influencing the distribution of sand and gravel in Britain ... 15
 2.4.2. Fluvial deposits ... 16
 2.4.2.1. River channel or alluvial deposits 16
 2.4.2.2. River terrace deposits 17
 2.4.2.3. Alluvial fans .. 19
 2.4.3. Glacial deposits .. 19
 2.4.3.1. Moundy glaciofluvial deposits: eskers, kames and kame-terraces . 20
 2.4.3.2. Terraced glaciofluvial deposits: outwash (sandar) and fans 21
 2.4.3.3. Periglacial phenomena and deposits 23
 2.4.3.4. Screes, block-fields and head deposits 24
 2.4.4. Coastal deposits ... 24
 2.4.5. Marine deposits ... 26
 2.4.6. Gravels in the solid formations 26
2.5. Aggregate materials in desert regions 27
2.6. Aggregate materials in tropical regions 29
2.7. The effects of alteration and weathering 30
 2.7.1. Alteration .. 31
 2.7.2. Weathering .. 31
2.8. The influence of geological structure 33
 2.8.1. Rock structures and geological structures (primary and secondary structures) 33
 2.8.1.1. Depositional structures and rock textures (primary structures) in sedimentary rocks 33
 2.8.1.2. Primary structures in igneous rocks 34
3. Field investigation of deposits

3.1. Introduction
3.2. Desk study
 3.2.1. Topographic maps
 3.2.2. Geological maps
 3.2.3. Aggregate resource maps
 3.2.4. Derivative resource maps
 3.2.5. Reports and small-scale maps
 3.2.6. Geological, geophysical and aggregates maps covering UK offshore areas
 3.2.6.1. Sand and gravel resource appraisals
 3.2.7. Geoscience libraries in Britain
3.3. Field investigation
 3.3.1. Satellite imagery
 3.3.2. Aircraft remote sensing
 3.3.3. Geophysics: airborne and ground geophysics
 3.3.3.1. Airborne methods
 3.3.3.2. Ground methods
 3.3.3.3. Marine geophysical methods
3.4. Geological appraisal for aggregate assessment
 3.4.1. Geological classification and stratigraphical position
 3.4.2. Field relations
 3.4.3. Thickness of the deposit
 3.4.4. Structure of the deposit
 3.4.5. Bulk composition
 3.4.6. State of weathering and alteration of the rock mass
3.5. Sample collection
 3.5.1. Drilling for sampling, hard rock
 3.5.2. Shallow pits and trenches
 3.5.3. Drilling for sampling, sand and gravel
 3.5.3.1. Hand auger boring
 3.5.3.2. Power auger machines
 3.5.3.3. Hollow-stem augers
 3.5.3.4. Light cable percussion boring
 3.5.3.5. Reversed circulation drills
3.6. Marine exploration
 3.6.1. Echo sounder
 3.6.2. Side-scan sonar
 3.6.3. Sampling
 3.6.4. Seismic and acoustic prospecting techniques
3.7. Presentation of field and test results
 3.7.1. Cross sections and maps
 3.7.2. Estimation of aggregate reserves and resources; definitions of terms
 3.7.3. Basic resource categories
 3.7.4. Methods for estimating amounts
 3.7.5. Reliability of the estimates
CONTENTS

3.7.6. Some factors affecting the yield of a prospect 64
3.8. Exploration and development of aggregate prospects 64
References .. 64
Appendices A3.1 to A3.3. Availability of UK geological maps 69

4. Extraction ... 73
4.1. Introduction ... 73
4.2. Hard rock quarries .. 74
 4.2.1. Introduction ... 74
 4.2.2. Overburden removal and disposal 74
 4.2.3. Primary fragmentation ... 79
 4.2.3.1. Introduction ... 79
 4.2.3.2. Drilling .. 79
 4.2.3.3. Blasting .. 81
 4.2.3.4. Explosives ... 82
 4.2.3.5. Detonators ... 82
 4.2.3.6. Regulations ... 82
 4.2.3.7. Blast specification .. 83
 4.2.3.8. Ripping .. 84
 4.2.4. Secondary breaking ... 85
 4.2.5. Loading .. 85
 4.2.5.1. Rope operated face shovels 85
 4.2.5.2. Hydraulic excavators .. 86
 4.2.5.3. Hydraulic backhoes ... 86
 4.2.5.4. Wheeled loaders ... 86
 4.2.6. Hauling .. 88
4.3. Sand and gravel operations ... 89
 4.3.1. Introduction ... 89
 4.3.2. Overburden removal .. 89
 4.3.3. Excavating techniques and equipment 89
 4.3.3.1. Wet working ... 90
 4.3.3.2. Dry pit working .. 90
 4.3.4. Loading and conveying .. 91
4.4. Marine aggregates ... 91
 4.4.1. Introduction ... 91
 4.4.2. Recovery of marine aggregates ... 91
4.5. Extraction, planning and scheduling ... 92
 4.5.1. Introduction .. 92
 4.5.2. Quarry plans .. 93
 4.5.3. Overburden payrock ratios ... 93
 4.5.4. Overburden removal ... 93
 4.5.5. Haul roads and conveyor routes 93
 4.5.6. Equipment selection ... 94
 4.5.6.1. Introduction ... 94
 4.5.6.2. Drilling equipment ... 94
 4.5.6.3. Loading equipment .. 94
 4.5.6.4. Hauling equipment ... 94
4.6. Environmental issues ... 95
 4.6.1. Introduction .. 95
 4.6.2. Noise ... 95
 4.6.3. Dust ... 95
Contents

4.6.4. Blasting 96
4.6.4.1. Ground vibration 96
4.6.4.2. Air blast 96
4.6.5. Nuisance 96
4.6.5.1. Noise nuisance 96
4.6.5.2. Dust nuisance 97
4.6.6. Visual impact 97
4.6.7. Restoration 97
4.7. Future trends 98
4.7.1. Super quarries 98
4.7.2. In-pit crushers 98
4.7.3. Underground quarrying 98
References 100
Appendix A4.1. Diagrams of extraction equipment 101

5. Processing 107
5.1. Introduction 107
5.2. Comminution 108
5.2.1. Introduction 108
5.2.2. Primary crusher selection 109
5.2.3. Jaw crushers 110
5.2.4. Gyratory crushers 111
5.2.5. Impactors 112
5.2.6. Vertical shaft impactors 113
5.2.7. Cone crushers 113
5.2.8. Gyratory disc crushers 114
5.2.9. Rolls crushers 114
5.2.10. Grinding 115
5.3. Sizing .. 116
5.3.1. Introduction 116
5.3.2. Objectives of sizing 116
5.3.3. Screening 117
5.3.3.1. Principles 117
5.3.3.2. Inclined vibrating screens 118
5.3.3.3. Horizontal vibrating screens 119
5.3.3.4. Arrangement of vibrating screens 120
5.3.3.5. Trommel screens 120
5.3.3.6. Grizzly screens 120
5.3.3.7. Miscellaneous screening devices 121
5.3.4. Classification 122
5.3.4.1. Principles of classification 122
5.3.4.2. Gravitational hydraulic classifiers ... 122
5.3.4.3. Centrifugal (cyclonic) hydraulic classifiers 123
5.3.4.4. Air cyclones 124
5.4. Beneficiation 124
5.4.1. Introduction 124
5.4.2. Scouring and sizing 124
5.4.3. Washing and scrubbing 124
5.4.3.1. Marine dredged aggregates 125
5.4.3.2. Rinsing 126
5.4.4. Density separation 126
5.4.5. Shape sorting 128
CONTENTS

5.4.6. Magnetic separation ... 129
5.4.7. Sorting ... 129
5.4.8. Other separation processes ... 129

5.5. Solid–liquid separation; dewatering 129
5.5.1. Drainage ... 130
5.5.2. Use of screens ... 130
5.5.3. Use of classifiers ... 130
5.5.4. Thickener ... 131
5.5.5. Filtration ... 132

5.6. Storage and distribution ... 133
5.6.1. Storage ... 133
5.6.2. Outloading ... 134

5.7. Environmental considerations .. 135
5.7.1. Noise ... 135
5.7.2. Dust ... 136
5.7.3. Nuisance ... 136

5.8. Process and quality control ... 136

5.9. Plant flowsheets ... 137
5.9.1. Sand and gravel process plant 137
5.9.2. Hard rock (roadstone) process plant 138

5.10. Future trends .. 140

References ... 142

6. Description and classification of aggregates 145

6.1. Introduction ... 145

6.2. Descriptive and classification schemes in general 145
6.2.1. Classical geological schemes 145
6.2.2. Descriptive and classification schemes for engineering purposes 145
6.2.3. The description and classification of rock weathering 148
6.2.4. Classification schemes based on specific properties 149
6.2.5. The use of local and traditional terms 149

6.3. Basic considerations on the description and classification of aggregates ... 150
6.3.1. The purpose and requirements of a classification scheme for aggregates ... 150
6.3.2. Aggregate type .. 150
6.3.3. Description of physical characteristics 150
6.3.4. Petrological classification .. 150
6.3.5. Test data ... 151

6.4. Classification schemes for aggregates 151
6.4.1. Historical developments within the United Kingdom 151
6.4.2. Current British Standards .. 153
6.4.3. American Standards .. 155
6.4.4. Europe ... 155
6.4.5. Southern Africa ... 156
6.4.6. Recommended approach ... 156

6.5. The petrographic description of aggregates 159
6.5.1. General ... 159
6.5.2. ASTM C295 .. 159
6.5.3. BS 812: Part 104 .. 159
6.5.4. Rock samples ... 161
6.5.5. Precision of quantitative methods 161
6.5.6. Site inspection of aggregate sources 162

References ... 162

7. Sampling and testing ... 167
 7.1. Introduction ... 167
 7.2. Sampling .. 167
 7.2.1. General considerations 167
 7.2.2. Sampling procedures 168
 7.2.2.1. Quarry face rock 168
 7.2.2.2. Sand and gravel deposits 168
 7.2.2.3. Aggregate products, sand and gravel 168
 7.2.2.4. Aggregate products, crushed-rock quarries 169
 7.2.3. Sample size ... 169
 7.3. Statistical considerations 169
 7.4. Repeatability and reproducibility 170
 7.4.1. Repeatability (r) 170
 7.4.2. Reproducibility (R) 171
 7.4.3. Sampling considerations 171
 7.5. Testing .. 171
 7.5.1. Physical tests 172
 7.5.1.1. Aggregate grading 172
 7.5.1.2. Sand equivalent value (ASTM 2419) 173
 7.5.1.3. Aggregate shape 173
 7.5.1.2. Flakiness index, I_F (BS 812: 1989) 173
 7.5.1.3. Elongation Index, I_E (BS 812: 1990) 174
 7.5.1.4. Discussion 174
 7.5.1.5. Angularity 175
 7.5.1.6. Sphericity and roundness 176
 7.5.1.7. Surface texture 176
 7.5.1.3. Relative density, bulk density and water absorption . 176
 7.5.1.4. Bulk density (unit weight) 176
 7.5.1.5. Aggregate shrinkage 176
 7.5.2. Petrographic examination of aggregates 177
 7.5.3. Mechanical tests 177
 7.5.3.1. Strength ... 177
 7.5.3.2. Aggregate impact value (AIV) 177
 7.5.3.3. Aggregate crushing value (ACV) 178
 7.5.3.4. Discussion 178
 7.5.3.5. Ten per cent fines value 180
 7.5.3.6. Modified aggregate impact test 181
 7.5.3.7. Other non-standard values 181
 7.5.3.8. Tests on ledge or lump rock 181
 7.5.4. Durability and frost susceptibility 183
 7.5.4.1. Mechanical tests 183
 7.5.4.2. Physico-chemical tests 186
 7.5.5. Chemical tests 189
 7.5.5.1. Organic content 189
 7.5.5.2. Chloride content 189
 7.5.5.3. Sulphate content 190
 7.5.5.4. Potential alkali reactivity 190
 7.5.5.5. Draft British Standard procedures 192
9.3.2. Sampling and testing of fine aggregates .. 229
9.3.3. Grading of sands .. 229
9.3.4. Impurities .. 231
9.3.5. Testing for fines .. 233

9.4. Influence of sand and fines characteristics on mortar properties 234
9.4.1. Workability .. 234
9.4.2. Water retentivity .. 235
9.4.3. Strength .. 235
9.4.4. Durability .. 235

9.5. UK specifications and practice ... 235
9.5.1. Masonry mortars .. 235
9.5.2. External renderings ... 237
9.5.3. Internal plastering .. 237
9.5.4. Floor screeds .. 238

9.6. Specifications and practice outside the UK ... 239

9.7. Occurrence of mortar sands in the UK ... 241

9.8. Engineering performance and problems of mortars with particular reference to UK case histories ... 243
9.8.1. Effect of grading .. 243
9.8.2. Current experience .. 245
9.8.3. Future trends in the use of sands ... 246
9.8.4. Artificial aggregates used in mortars .. 246

9.9. Discussion ... 246

References ... 247

10. Aggregates in unbound pavement construction ... 249
10.1. Introduction .. 249
10.2. Primary aggregates .. 250
10.2.1. Igneous rocks ... 250
10.2.2. Sedimentary rocks and unconsolidated sediments 251
10.2.3. Metamorphic rocks ... 251
10.3. Secondary aggregates ... 251
10.3.1. Overview .. 251
10.3.2. Colliery spoil ... 251
10.3.3. Spent oil shale .. 251
10.3.4. Power station ashes .. 251
10.3.5. Wastes from quarries .. 252
10.3.6. Incinerated refuse ... 252
10.3.7. Demolition wastes .. 252
10.3.8. Metallurgical slags ... 252
10.4. Resistance to wear ... 252
10.4.1. The degradation process .. 252
10.4.2. Types of degradation ... 252
10.4.3. Influence of particle shape and size ... 253
10.4.4. Influence of moisture content ... 253
10.4.5. Influence of grading on aggregate degradation 253
10.4.6. Engineering effects of degradation ... 254
10.4.7. Correlation between tests and service behaviour 255
10.5. Resistance to decay .. 255
10.5.1. Mechanisms and assessment .. 255
10.5.2. Discussion .. 257
10.6. Effects of water migration ... 257
11. Aggregates in bituminous bound construction materials
11.1. Introduction
11.2. Petrological types of aggregate used in bituminous compositions
11.3. Desirable properties of aggregates for bituminous mixes
11.4. Influence of aggregate petrography on engineering properties
 11.4.1. Crushing strength
 11.4.1.1. Igneous rocks
 11.4.1.2. Sedimentary rocks
 11.4.1.3. Metamorphic rocks
 11.4.1.4. Artificial aggregates
 11.4.2. Resistance to abrasion
 11.4.2.1. Igneous rocks
 11.4.2.2. Sedimentary rocks
 11.4.2.3. Metamorphic rocks
 11.4.2.4. Artificial aggregates
 11.4.3. Resistance to polishing
 11.4.3.1. Igneous and metamorphic rocks
 11.4.3.2. Sedimentary rocks
 11.4.3.3. Artificial aggregates
 11.4.4. Resistance to stripping
 11.4.4.1. Influence of aggregate petrography
 11.4.4.2. Influence of binder and adhesion agents
 11.4.5. Resistance to weathering effects in service
 11.4.6. Ability to contribute to strength and stiffness of the total mix
11.5. Detailed requirements and conflicting requirements for aggregates for bituminous pavement materials
 11.5.1. Detailed requirements: strength
 11.5.2. Detailed requirements—polishing resistance and abrasion resistance:
 Department of Transport (UK)
 11.5.3. General comments
 11.5.4. Detailed requirements—Property Services Agency UK (Airfields Branch)
 11.5.5. Relationship between mix composition and desirable aggregate properties
11.6. Conclusions
References
Appendix A11.1. Adhesion tests

12. Railway track ballast
12.1. Introduction
12.2. Rock types suitable for track ballast in Great Britain
12.3. British practice
12.4. European practice .. 287
 12.4.1. Germany .. 287
 12.4.2. France .. 287
 12.4.3. Italy .. 288
 12.4.4. Spain .. 288
12.5. US practice ... 288
References .. 289

 13.1. Introduction 291
 13.2. Key properties of filter aggregates 292
 13.2.1. General 292
 13.2.2. Grading 292
 13.2.3. Aggregate strength 292
 13.2.4. Particle durability 292
 13.2.5. Particle shape 292
 13.2.6. Particle texture 292
 13.2.7. Surface coatings 292
 13.2.8. Particle porosity 293
 13.2.9. Chemical reactivity 293
 13.3. Testing of aggregates 293
 13.4. Water treatment: filtration through sand 293
 13.4.1. General 293
 13.4.2. Filter bed sand 294
 13.4.3. Filter gravel 295
 13.5. Aggregates for biological percolating filters 295
 13.6. Filters for civil engineering structures 295
 13.6.1. General 295
 13.6.2. Specification of aggregates 297
 13.7. Concluding remarks 297
References .. 298

Appendix: Aggregates properties 299

Glossary .. 307

Index .. 331
An adequate supply of aggregates of the right quality is essential to construct and maintain serviceable, safe, durable and cost effective building and civil engineering works including our homes, hospitals, schools, work places and transport systems. All are vital to our well being, our social development and economic growth. Aggregates are, therefore, vital to the maintenance and development of what is literally the physical framework of our society.

There is nowadays more appreciation that the exploitation of aggregates comes at an environmental cost. The present Government has championed the principles of Sustainable Construction. The implication for aggregates is that they must be produced and utilised in a sustainable, prudent and efficient manner in order that we minimise the impact on our environment whilst maximising the beneficial use of natural resources. Central to Sustainable Construction is the delivery of effective environmental management, efficient and cost effective production and robust end-use specification, taken forward by a committed, well trained and informed workforce. Availability of comprehensive, authoritative and easily assimilated guidance is key to delivering Sustainable Construction. Building on the previous editions, this updated text brings together practitioners with expert knowledge from all aspects of aggregate exploration, extraction, production and end-use to provide a unique reference work that will do much to secure a workforce and client-base that are committed and fully prepared to meet those challenges.

Sustainable Construction also demands that, where it is practicable and technically possible, we should seek to maximise the opportunities of producing aggregates from recycled and secondary sources. I am particularly pleased to see that in the latest edition of the text reference is made to the increasing use of construction and demolition waste as aggregate.

‘Aggregates’ is now the most successful and well established reference work from a long line of distinguished publications from the Geological Society’s Special Publication Series. Its success is thoroughly deserved. Since its first edition it has established a reputation as the ‘standard’ work on the subject. I congratulate all those who have contributed to it.

Rt. Hon. Nick Raynsford MP
Minister of Planning, Housing and Construction
Department of the Environment, Transport and the Regions
Preface to the 3rd edition

The growth in demand for this book in Great Britain seems unending—I parody the comment I started with in the Preface for the 2nd Edition of this book in 1993. The book continues to be a best seller in the Geological Society’s Publications and it has been decided that a further printing is necessary. Opportunity was therefore taken to make essential revision of the 2nd Edition, including updates of the references and in particular those concerned with the European Standards which have proliferated since the 1993 edition.

This work has been undertaken by Dr Ian Sims, a director of STATS Limited (Specialist Engineering Materials and Environmental Consultants), Dr M. R. Smith, Institute of Quarrying in Nottingham, Dr Graham West, formerly TRL Crowthorne, all officers of the 2nd Working Party together with myself and in addition, Mr John Lay of RMC Aggregates (UK) Limited, Bromsgrove. Each member of this revision group was responsible for two or three chapters and/or appendices of the book and the work was carried out during 2000.

This Preface gives me the opportunity to say now that the Aggregates book spawned two further Working Party reports to make a trilogy on Geological Materials in Construction. The second book was also published as a Geological Society Engineering Geology Special Publication (No. 16), in 1999 entitled Stone: Building Stone, Rock Fill and Armourstone in Construction; and currently still in the preparation stage is Clay Materials in Construction (provisional title) due for publication about 2003.

This Preface also gives me the opportunity to reiterate what I have said before, but which I do not think I have made clear enough, is that the Aggregates book (as well as its Stone and Clay counterparts) is the combined work of the whole Working Party membership. Each chapter of the book was initially drafted by one, two or three members of the Working Party and subsequently through many day-long meetings edited and cross-checked by all the members and commented upon by the corresponding members. In this way, every aspect of the book carries the collective authority of the whole Working Party. Appendices were handled in a similar way and a particular effort was made to make the book as comprehensive as possible and despite being drafted by a committee, to achieve as far as possible continuity of style and to ensure a uniformity in the technical level and mode of presentation. The brunt of the early work was borne by the Secretary to the Committee, Dr Ian Sims, and the latter work by the Editor, Dr Mike Smith. However I must emphasize that each member of the Working Party worked hard and long to achieve the success of the previous edition and any credit should be distributed to each member of the Working Party equally.

It remains to say thank you to the Revision Team, who like all the members of the Working Party, gave freely of their time.

P. G. Fookes F.R.Eng.
Chairman of the Working Party
Winchester
January 2001
Members of the review team for the third edition

Professor P. G. Fookes (Chairman of Working Party), Consulting Engineering Geologist, Winchester, Hampshire.
Mr J. Lay, Technical Services Manager, RMC Aggregates (UK) Limited, Bromsgrove.
Dr I. Sims (Secretary of Working Party & Convenor of Team), Director, Materials Consultancy, STATS Limited, St. Albans, Hertfordshire.
Dr G. West, now retired, formerly Head of Aggregates Section, Transport Research Laboratory, Crowthorne, Berkshire.

Members of the first and second working parties
(affiliations shown as at the time of publication of the second edition in 1993)

Professor P. G. Fookes* (Chairman), Consultant Engineering Geologist, Winchester, Hants.
R. A. Fox*, Manager, Land Search and Exploration Department, Ready Mixed Concrete (United Kingdom) Ltd, Feltham, Middx.
P. M. Harris*, Principal Scientific Officer, British Geological Society, Keyworth, Notts.
Dr G. Lees*, retired; formerly Head of Department, Department of Transportation and Highway Engineering, University of Birmingham, Birmingham.
A. R. Roeder, Principal Concrete Technologist, British Cement Association, Wexham Springs, Slough, Bucks.
Dr I. Sims* (Secretary), Associate, Sandberg, Consulting, Inspecting and Testing Engineers, London.
Dr M. R. Smith, Senior Lecturer in Quarry Engineering, Imperial College, London.
Dr G. West, Head of Aggregates Section, Transport Research Laboratory, Crowthorne, Berks.

Principal corresponding members and members of the first working party
(who were not members of the second working party)

Professor A. D. Burnett*, Department of Geology, Florida Atlantic University, Boca Raton, USA.
Professor D. M. Ramsay*, Department of Geology, University of Glasgow, Glasgow.
Dr A. Hartley†, Director of Civil Engineering Studies, Leeds Polytechnic, Leeds.
Dr R. H. Jones, Department of Civil Engineering, University of Nottingham, Nottingham.

* Member of first working party 1978–1984.
† Dr. A. Hartley was Secretary to the first Working Party until his untimely death in December 1983 after which time the duty was performed by R. A. Fox.
Acknowledgments to the second edition (1993)

The Working Party has received considerable help from individuals, organizations and companies too numerous to mention who have contributed in some way to this second edition of the report by providing advice, information and illustrations or by acting as reviewers and referees for particular chapters. To all of these the Working Party is most grateful.

The very significant contribution made by Companies whose staff was afforded the time and permission to accomplish the task of the Working Parties cannot be overstated. Particular mention should be made of:

- British Cement Association
- British Geological Survey
- Laing Technology Group
- Land and Mineral Resource Consultants Ltd.
- Ready Mixed Concrete (UK) Ltd.
- Sandberg
- Transport Research Laboratory
- Wimpey Environmental Ltd.

Grateful appreciation is also recorded for drawing, clerical and word processing assistance provided to the editors by the Department of Mineral Resources Engineering, Imperial College and especially to Mr T. Allen, Ms S. Curley and Mrs K. Clarke.

Dr M. Smith (editor) also expresses his gratitude for the support of a lectureship at Imperial College by the sponsors of Quarry Engineering namely:

- Allis Mineral Systems (UK) Ltd.
- ARC Ltd.
- Blue Circle Industries Plc
- Burlington Slate Ltd.
- Cleanaway Ltd.
- Evered Bardon Plc
- Hepworth Minerals and Chemicals Ltd.
- ICI Explosives
- Nordberg (UK) Ltd.
- Orenstein and Koppel Ltd.
- Pioneer Aggregates (UK) Ltd.
- R. J. B. Mining Ltd.
- Redland Aggregates Ltd.
- RMC Aggregates Ltd.
- Rugby Cement
- Steetley Quarry Products Ltd.
- Tarmac Quarry Products Ltd.
- Tilcon Ltd.
- Wimpey Asphalt Ltd.

The second edition was produced with support from the Sand and Gravel Association

The Sand and Gravel Association represents the planning, legislative, technical and other interests of 90 of Britain’s sand and gravel producers. It is a leader in encouraging ever higher environmental standards and its widely acclaimed Restoration Awards Scheme has recognized exceptional achievement for over 20 years.

Sand and Gravel Association, 1 Bramber Court, Bramber Road, London W14 9PB, UK.